109 research outputs found

    Integration of a Vehicle Operating Mode Management into UNICARagil’s Automotive Service-oriented Software Architecture

    Get PDF
    Automated vehicles require a central decision unit in order to coordinate the responsibility for the driving task between multiple operating modes. Additionally, other nondriving related tasks such as operation of an automatic door system must be coordinated as well. In this paper, we will motivate the usefulness of such a central decision unit at the example of the operating mode management of the UNICARagil project. We will describe its integration with UNICARagil’s Automotive Service-oriented Software Architecture and how modularity of this service-oriented software architecture is ensured. An example from the project’s context will further illustrate the functioning principle of the operating mode management in combination with the service orchestration of the Automotive Service-oriented Software Architecture

    Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND license after 24 months of embargo periodThe catalytic wet peroxide oxidation (CWPO) of the imidazolium-based ionic liquids 1-butyl-3-methylimidazolium chloride (BmimCl), 1-butyl-3-methylimidazolium acetate (BmimAc), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BmimNTf2), 1-hexyl-3-methylimidazolium chloride (HmimCl) and 1-decyl-3-methylimidazolium chloride (DmimCl) was examined by using a Fe catalyst supported on alumina (Fe2O3/Al2O3) that was prepared by incipient wetness impregnation. Variable H2O2 doses from 0.5 to 1.5 times the stoichiometric value provided similar results in terms mg TOC removed per mg H2O2 decomposed at 80 °C (0.033 mgTOC mgH2O2−1), all allowing complete Bmim+ removal. Raising the reaction temperature to 90 °C increased the mineralization rate up to 40% TOC conversion. Differences in TOC conversion among counteranions (chloride, acetate and NTf2−) were negligible. A plausible reaction pathway is propose involving hydroxylated compounds and short-chain organic acids as reaction byproducts. CWPO markedly increased the subsequent biodegradability of the IL test solutions and led there to TOC conversions after CWPO-biodegradability assays of 55–60%. The Fe2O3/Al2O3 catalyst exhibited high long-term stability; thus, it retained most of its properties and underwent negligible Fe leaching.The authors acknowledge funding from Spain’s MINECO (CTM2016-76564-R), the Madrid Regional Government (S2013/MAE-2716), UAM-Santander (CEAL-AL/2015-08) and UNAM Engineering Institute (II-4307). I. F. Mena also thanks MINECO and ESF for award of a research gran

    Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Helicobacter pylori </it>is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the <it>Cox-2 </it>gene is up-regulated in the gastric mucosa during <it>H. pylori </it>infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an <it>in vivo </it>model, thereby identifying potential targets for the study of the role of Cox- 2 in <it>H. pylori </it>pathogenesis and the initiation of pre- cancerous changes.</p> <p>Results</p> <p>Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after <it>H. pylori </it>infection. <it>H. pylori </it>infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of <it>H. pylori </it>infection. The Cox-2 dependent subset included those influencing gastric physiology (<it>Gastrin, Galr1</it>), epithelial barrier function (<it>Tjp1, connexin45, Aqp5</it>), inflammation (<it>Icam1</it>), apoptosis (<it>Clu</it>) and proliferation (<it>Gdf3, Igf2</it>). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression.</p> <p>Conclusion</p> <p>This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by <it>H. pylori </it>infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity.</p

    Towards Safety Concepts for Automated Vehicles by the Example of the Project UNICARagil

    Get PDF
    Striving towards deployment of SAE level 4+ vehicles in public traffic, researchers and developers face several challenges due to the targeted operation in an open environment. Due to the absence of a human supervisor, ensuring and validating safety while driving automatically is one of the key challenges. The arising complexity of the technical system must be handled during the entire research and development process. In this contribution, we outline the coherence of different safety-activities in the research project UNICARagi/. We derive high-level safety requirements and present the central safety mechanisms applied to automated diriving. Moreover, we outline the approaches of the project UNICARagi/ to address the validation challenge for automated vehicles. In order to demonstrate the overall approach towards a coherent safety argumentation, the connection of high-level safety requirements, safety mechanisms, as weil as validation approaches is illustrated by means of a selected example scenario

    Detection of Bioactive Exometabolites Produced by the Filamentous Marine Cyanobacterium Geitlerinema sp.

    Get PDF
    Marine cyanobacteria are noted for their ability to excrete metabolites with biotic properties. This paper focuses on such exometabolites obtained from the culture of the marine filamentous cyanobacterium Geitlerinema sp. strain, their purification and subsequent analyses. By this means the recoveries of the active compounds, a prerequisite for properly determining their concentration, are quantified here for the first time. We demonstrate a new procedure using Amberlite XAD-1180 resin in combination with the eluent isopropanol for extraction of the culture media and gas chromatography as simplified chemical analysis. This procedure reduced necessary bacteria cultivation time (from 150 to 21 days) at low volumes of culture media (300 mL) required for identification of two selected bioactive compounds: 4,4′-dihydroxybiphenyl and harmane

    UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts

    Get PDF
    This paper introduces UNICARagil, a collaborative project carried out by a consortium of seven German universities and six industrial partners, with funding provided by the Federal Ministry of Education and Research of Germany. In the scope of this project, disruptive modular structures for agile, automated vehicle concepts are researched and developed. Four prototype vehicles of different characteristics based on the same modular platform are going to be build up over a period of four years. The four fully automated and driverless vehicles demonstrate disruptive architectures in hardware and software, as well as disruptive concepts in safety, security, verification and validation. This paper outlines the most important research questions underlying the project

    Mutation in LBX1/Lbx1 precludes transcription factor cooperativity and causes congenital hypoventilation in humans and mice

    Get PDF
    The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2. Here we identify a LBX1 frameshift (LBX1FS) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1. Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control

    Automation of the UNICARagil Vehicles

    Get PDF
    The German research project UNICARagil is a collaboration between eight universities and six industrial partners funded by the Federal Ministry of Education and Research. It aims to develop innovative modular architectures and methods for new agile, automated vehicle concepts. This paper summarizes the automation approach of the driverless vehicle concept and its modular realization within the four demonstration vehicles to be built by the consortium. On-board each vehicle, this comprises sensor modules for environment perception and modelling, motion planning for normal driving and safe halts, as well as the respective control algorithms and base functionalities like precise localization. A control room and cloud functionalities provide off-board support to the vehicles, which are additionally addressed in this paper
    • …
    corecore