8 research outputs found

    Broadband tunable, polarization-selective and directional emission of (6,5) carbon nanotubes coupled to plasmonic crystals

    Get PDF
    We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths. Emission from these hybrid films is spectrally narrow (20–40 meV) yet broadly tunable (∼1000–1500 nm) and highly directional (divergence <1.5°). In addition, SLR scattering renders the emission highly polarized, even though the SWNTs are randomly distributed. Numerical simulations are applied to correlate the increased local electric fields around the nanodisks with the observed enhancement of directional emission. The ability to control the emission properties of a single type of near-infrared emitting SWNTs over a wide range of wavelengths will enable application of carbon nanotubes in multifunctional photonic devices

    Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    No full text
    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification

    Controlled In Situ PbSe Quantum Dot Growth around Single-Walled Carbon Nanotubes: A Noncovalent PbSe-SWNT Hybrid Structure

    No full text
    We developed a simple method of synthesizing noncovalently linked hybrids of PbSe quantum dots (QDs) and single-walled carbon nanotubes (SWNTs). The PbSe QDs grow around the SWNTs without any linker molecule or chemical modification of the SWNTs. We are able to control the size and shape of the QDs attached to the SWNTs by varying the synthesis conditions and elucidate the three-dimensional (3D) morphology and atomic structure of the half-ring-shaped PbSe QDs bonded to the SWNTs using scanning transmission electron microscopy (STEM) tomography and high-resolution transmission electron microscopy (HRTEM). The PbSe QDs not only assemble on the SWNT bundles, but they actually grow around them. The growth of the PbSe QDs around SWNT sidewalls is favored over the growth of spherical particles in solution, probably due to dipole stabilization by the large π-electron system of the SWNTs

    Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes

    No full text
    The selective dispersion of single-walled carbon nanotube species (n,m) with conjugated polymers such as poly­(9,9-dioctylfluorene) (PFO) and poly­(9,9-dioctylfluorene-<i>co</i>-benzothiadiazole) (F8BT) in organic solvents depends not only on the type of solvent but also on the molecular weight of the polymer. We find an increasing amount of nanotubes and altered selectivities for dispersions with higher molecular weight polymers. Including the effects of different aromatic solvents, we propose that solution viscosity is one of the factors influencing the apparent selectivity by changing the reaggregation rate of the single-walled carbon nanotubes (SWNT). The type of solvent, polymer molecular weight, concentration, and viscosity should thus be taken into account when screening for new polymers for selective SWNT dispersion

    Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    No full text
    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly­(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (10<sup>6</sup>) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61
    corecore