32 research outputs found

    New methodologies for interconnect reliability assessments of integrated circuits

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2000.Includes bibliographical references (leaves 245-251).The stringent performance and reliability demands that will accompany the development of next-generation circuits and new metallization technologies will require new and more accurate means of assessing interconnect reliability. Reliability assessments based on conventional methodologies are flawed in a number of very important ways, including the disregard of the effects of complex interconnect geometries on reliability. New models, simulations and experimental methodologies are required for the development of tools for circuit-level and process-sensitive reliability assessments. Most modeling and experimental characterization of interconnect reliability has focused on simple straight lines terminating at pads or vias. However, laid-out integrated circuits usually have many interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as "trees". An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when the tree includes junctions. We have extended the understanding of "immortality" demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. We verified the concept of immortality in interconnect trees through experiments on simple tree structures. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. We suggest a computationally efficient and flexible strategy for assessment of the reliability of entire integrated circuits. The proposed hierarchical reliability analysis can provide reliability assessments during the design and layout process (Reliability Computer Aided Design, RCAD). Design rules are suggested based on calculations of the electromigration-induced development of inhomogeneous steadystate mechanical stress states. Failure of interconnects by void nucleation in single-layermetallization, as well as failure by void growth in the presence of refractory metal shunt layers are taken into account. The proposed methodology identifies a large fraction of interconnect trees in a typical design as immune to electromigration-induced failure. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We have demonstrated the validity of these models and simulations through comparisons with experiments on simple trees, such as "L"- and "T"-shaped trees with different current configurations. Because analyses made using simulations are computationally intensive, simulations should be used for analysis of the least reliable trees. The reliability of the majority of the mortal trees can be assessed using a conservative default model based on nodal reliability analyses for the assessment of electromigration-limited reliability of interconnect trees. The lifetimes of the nodes are calculated by estimating the times for void nucleation, void growth to failure, and formation of extrusions. The differences between straight stud-to-stud lines and interconnect trees are studied by investigating the effects of passive and active reservoirs on electromigration. Models and simulations were validated through comparisons with experiments on simple tree structures, such as lines broken into two limbs with different currents in each limb. Models, simulations and experimental results on the reliability of interconnect trees are shown to yield mutually consistent results. Taken together, the results from this research have provided the basis for the development of the first RCAD tool capable of accurate circuit-level, processing sensitive and layout-specific reliability analyses.by Stefan P. Hau-Riege.Ph.D

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 83, 043107 (2012) and may be found at https://doi.org/10.1063/1.3698294.The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480–2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser

    Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    Get PDF
    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals

    Extending the size-parameter range for plane-wave light scattering from infinite homogeneous circular cylinders Extending the size-parameter range for plane-wave light scattering from infinite homogeneous circular cylinders

    No full text
    Abtract We have developed an algorithm that extends the possible size-parameter range for the calculation of plane-wave light scattering from infinite homogeneous circular cylinders using a Mie-type analysis. Our algorithm is based on the calculation of the ratios of Bessel functions instead of calculating the Bessel functions or their logarithmic derivatives directly. We have found that this algorithm agrees with existing methods (when those methods converge). We have also found that our algorithm converges in cases of very large size parameters, in which case other algorithms often do not

    High-intensity X-rays interaction with matter: processes in plasmas, clusters, molecules and solids

    No full text
    Filling the need for a book bridging the effect of matter on X-ray radiation and the interaction of x-rays with plasmas, this monograph provides comprehensive coverage of the topic. As such, it presents and explains such powerful new X-ray sources as X-ray free-electron lasers, as well as short pulse interactions with solids, clusters, molecules, and plasmas, and X-ray matter interactions as a diagnostic tool. Equally useful for researchers and practitioners working in the field
    corecore