47 research outputs found

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation.Comment: 31 pages, 15 figure

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2×6.0×6.9 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF

    Data-Independent Acquisition (DIA) Is Superior for High Precision Phospho-Peptide Quantification in <i>Magnaporthe oryzae</i>

    No full text
    The dynamic interplay of signaling networks in most major cellular processes is characterized by the orchestration of reversible protein phosphorylation. Consequently, analytic methods such as quantitative phospho-peptidomics have been pushed forward from a highly specialized edge-technique to a powerful and versatile platform for comprehensively analyzing the phosphorylation profile of living organisms. Despite enormous progress in instrumentation and bioinformatics, a high number of missing values caused by the experimental procedure remains a major problem, due to either a random phospho-peptide enrichment selectivity or borderline signal intensities, which both cause the exclusion for fragmentation using the commonly applied data dependent acquisition (DDA) mode. Consequently, an incomplete dataset reduces confidence in the subsequent statistical bioinformatic processing. Here, we successfully applied data independent acquisition (DIA) by using the filamentous fungus Magnaporthe oryzae as a model organism, and could prove that while maintaining data quality (such as phosphosite and peptide sequence confidence), the data completeness increases dramatically. Since the method presented here reduces the LC-MS/MS analysis from 3 h to 1 h and increases the number of phosphosites identified up to 10-fold in contrast to published studies in Magnaporthe oryzae, we provide a refined methodology and a sophisticated resource for investigation of signaling processes in filamentous fungi

    Evidence of a New MoYpd1p Phosphotransferase Isoform in the Multistep Phosphorelay System of Magnaporthe oryzae

    No full text
    Different external stimuli are perceived by multiple sensor histidine kinases and transmitted by phosphorylation via the phosphotransfer protein Ypd1p in the multistep phosphorelay system of the high osmolarity glycerol signaling pathway of filamentous fungi. How the signal propagation takes place is still not known in detail since multiple sensor histidine kinase genes in most filamentous fungi are coded in the genome, whereas only one gene for Ypd1p exists. That raises the hypothesis that various Ypd1p isoforms are produced from a single gene sequence, perhaps by alternative splicing, facilitating a higher variability in signal transduction. We found that the mRNA of MoYPD1 in the rice blast fungus Magnaporthe oryzae is subjected to an increased structural variation and amplified putative isoforms on a cDNA level. We then generated mutant strains overexpressing these isoforms, purified the products, and present here one previously unknown MoYpd1p isoform on a proteome level. Alternative splicing was found to be a valid molecular mechanism to increase the signal diversity in eukaryotic multistep phosphorelay systems

    PTFE Based Multilayer Micro-Coatings for Aluminum AlMg3 Forms Used in Tire Production

    No full text
    The basic prerequisite for obtaining the coating of good quality is the production of a layer without the occurrence of surface defects. A possible solution to the occurrence of defects on the functional surface of the form is the application of a polytetrafluoroethylene (PTFE)-based coating. The coating helps to reduce surface roughness and &ldquo;smooth&rdquo; defects like pores and micro-shrinkage. For this reason, a new type and methodology of the coating were prepared to achieve more production cycles between the individual cleaning processes during the production of a tire. The subject of the study was the analysis of surface-applied micro-coatings, including the analysis of chemical composition by using energy-dispersive X-ray (EDX) and microstructure in the area of coatings. Detailed microstructural characterization of Alfipas 7818 and Alfiflon 39 and its imaging of surface structures were studied using atomic force microscopy. To examine the surface layer of the coatings, metallographic specimens of cross-sections (by means of a mold) were prepared and examined by light and electron microscopy. This new multilayer micro-coating with a thickness of 20&ndash;25 &mu;m has been found to prevent form contamination during tire production and to extend production cycles by 200&ndash;400% between process cleanings. This finding was actually tested in the production of tires in the environment of a large manufacturing company
    corecore