896 research outputs found

    Phase transitions in dense matter

    Full text link
    As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PT's) between these phases can vary from steep first order to smooth crossovers, depending on certain conditions. First-order PT's with more than one globally conserved charge, so-called non-congruent PT's, have characteristic differences compared to congruent PT's. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.Comment: Proceedings of XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017

    Constraining supernova equations of state with equilibrium constants from heavy-ion collisions

    Get PDF
    Cluster formation is a fundamental aspect of the equation of state (EOS) of warm and dense nuclear matter such as can be found in supernovae (SNe). Similar matter can be studied in heavy-ion collisions (HIC). We use the experimental data of Qin et al. [Phys. Rev. Lett. 108, 172701 (2012)] to test calculations of cluster formation and the role of in-medium modifications of cluster properties in SN EOSs. For the comparison between theory and experiment we use chemical equilibrium constants as the main observables. This reduces some of the systematic uncertainties and allows deviations from ideal gas behavior to be identified clearly. In the analysis, we carefully account for the differences between matter in SNe and HICs. We find that, at the lowest densities, the experiment and all theoretical models are consistent with the ideal gas behavior. At higher densities ideal behavior is clearly ruled out and interaction effects have to be considered. The contributions of continuum correlations are of relevance in the virial expansion and remain a difficult problem to solve at higher densities. We conclude that at the densities and temperatures discussed mean-field interactions of nucleons, inclusion of all relevant light clusters, and a suppression mechanism of clusters at high densities have to be incorporated in the SN EOS.Comment: 20 pages, 15 figures, v2: matches published version, only minor editorial correction

    Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

    Full text link
    The formation of clusters in nuclear matter is investigated, which occurs e.g. in low energy heavy ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean field model. All three models contain bound states of nuclei with mass number A <= 4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.Comment: 12 pages, 6 figures, published version, minor change

    Microplastic transport in soil by earthworms

    Get PDF
    Despite great general benefits derived from plastic use, accumulation of plastic material in ecosystems, and especially microplastic, is becoming an increasing environmental concern. Microplastic has been extensively studied in aquatic environments, with very few studies focusing on soils. We here tested the idea that microplastic particles (polyethylene beads) could be transported from the soil surface down the soil profile via earthworms. We used Lumbricus terrestris L., an anecic earthworm species, in a factorial greenhouse experiment with four different microplastic sizes. Presence of earthworms greatly increased the presence of microplastic particles at depth (we examined 3 soil layers, each 3.5 cm deep), with smaller PE microbeads having been transported downward to a greater extent. Our study clearly shows that earthworms can be significant transport agents of microplastics in soils, incorporating this material into soil, likely via casts, burrows (affecting soil hydraulics), egestion and adherence to the earthworm exterior. This movement has potential consequences for exposure of other soil biota to microplastics, for the residence times of microplastic at greater depth, and for the possible eventual arrival of microplastics in the groundwater

    Equations of state for supernovae and compact stars

    Get PDF
    A review is given of various theoretical approaches for the equation of state (EoS) of dense matter, relevant for the description of core-collapse supernovae, compact stars, and compact star mergers. The emphasis is put on models that are applicable to all of these scenarios. Such EoS models have to cover large ranges in baryon number density, temperature, and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. As the development of an EoS requires joint efforts from many directions, different theoretical approaches are considered and relevant experimental and observational constraints which provide insights for future research are discussed. Finally, results from applications of the discussed EoS models are summarized

    How Well Do We Know The Supernova Equation of State?

    Get PDF
    We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutron stars, and cluster formation, are confronted with constraints from experiments and astrophysical observations. There are just very few models which are compatible even with this very restricted set of constraints. These remaining models illustrate the uncertainty of the uniform nuclear matter EOS at high densities. In addition, at finite temperatures the medium modifications of nuclear clusters represent a conceptual challenge. In conclusion, there has been significant development in the recent years, but there is still need for further improved general purpose EOS tables

    Community assembly and coexistence in communities of arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities

    Observability and Identifiability Analyses of Process Models for Agricultural Anaerobic Digestion Plants

    Full text link
    Dynamic operation of anaerobic digestion plants requires advanced process monitoring and control. Different simplifications of the Anaerobic Digestion Model No. 1 (ADM1) have been proposed recently, which appear promising for model-based process automation and state estimation. As a fundamental requirement, observability and identifiability of these models are analyzed in this work, which was pursued through algebraic and geometric analysis. Manual algebraic assessment was successfull for small models such as the ADM1-R4 and simplified versions of the ADM1-R3, which were derived in this context. However, for larger model classes the algebraic approach showed to be insufficient. By contrast, the geometric approach, implemented in the STRIKE_GOLDD toolbox, allowed to show observability for more complex models (including ADM1-R4 and ADM1-R3), employing two independent algorithms. The present study lays the groundwork for state observer design, parameter estimation and advanced control resting upon ADM1-based models.Comment: 34 pages, 3 figures. Extended version. A shortened version was submitted to and accepted for the 24th International Conference on Process Control on April 4, 202
    • …
    corecore