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Community assembly and coexistence in
communities of arbuscular mycorrhizal fungi
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Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and
genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the
direct adoption of models for community assembly developed for other organism groups is not
evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal
fungi. We review research on the elements of community assembly and coexistence of arbuscular
mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several
points from the individual to the community level where the application of modern community
ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to
account for these special circumstances from a mycocentric point of view. We suggest that
hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken
into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal
fungi is also adaptable for other host-associated microbial communities.
The ISME Journal (2016) 10, 2341–2351; doi:10.1038/ismej.2016.46; published online 19 April 2016

Introduction: applying models of
community assembly and contemporary
coexistence theory to communities of
arbuscular mycorrhizal fungi: knowledge
gaps and difficulties

How communities assemble and which species can
coexist in the same locale has been a central question of
ecology. The recent advancement of high-throughput
molecular barcoding methods has enabled researchers
to obtain information on the composition and structure
of natural microbial communities more easily than
ever. This is especially important for organisms that are
difficult to culture, such as arbuscular mycorrhizal
(AM) fungi, which are obligate symbionts of plants
where they form multispecies symbiont communities
in the same root. Given the growing number of
molecular studies in the field of AM fungal community
research, it is timely to review the progress on under-
standing the processes that underlie AM fungal com-
munity assembly, and highlight the knowledge gaps.

The theoretical framework of community assembly
and coexistence (HilleRisLambers et al., 2012) com-
bines a classic filter model of community assembly
with modern coexistence theory (Chesson, 2000). The
filter model describes a regional pool of species from

which the members of local communities are selected
by passing through environmental and biotic filters.
Modern coexistence theory (Chesson, 2000) addresses
interactions on the local scale, which arise from niche
differences and fitness similarities. The combined
approach therefore acknowledges factors on a wide
spatiotemporal scale. Regional and local processes are
connected by the neutral process of dispersal. The
filter model is further nuanced by taking into account
feedbacks, when organisms are not only influenced by
but also have an impact on their environmental and
biotic filters (Figure 1).

AM fungi are a monophyletic group (phylum
Glomeromycota) of asexual, obligately symbiotic
fungi with a unique combination of traits regarding
morphology, genomic structure and ecology. Within
their coenocytic mycelia and spores, multiple,
potentially genetically divergent nuclei coexist,
making it difficult to delineate an individual even
with molecular methods (Table 1). Through intra-
radical and extraradical mycelia, they occupy a dual
niche, the plant root and soil. Both the soil environ-
ment and plant root can be described according to
a simple filter model as species filters preventing
certain AM fungal species from entering the local
community. However, the simple filter analogy ends
when taking into account that host plants and soil do
not remain unchanged during community assembly:
AM fungi interact with their hosts through hormonal
crosstalk and actively shape soil as ecosystem
engineers (See section: 'Feedbacks: AM fungi as
ecosystem engineers'). Taking into account these
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developmental, genetic and ecological angles, the
direct adoption of models for community assembly
developed for other organism groups is not evident.
There are several points from the individual to the
community level where the application of modern
community ecology terms runs into problems when
AM fungi are concerned (Table 1). Especially in the
area of coexistence, even for the definitions of such
fundamental concepts as ‘fitness’ further research
and discussion are needed (Table 2).

Here we introduce the elements of a community
assembly and coexistence model by highlighting
recent research on AM fungal communities.
As examples for each element, we included studies

that used DNA-based methods (preferentially, high-
throughput sequencing approaches) to investigate
AM fungal communities.

Factors affecting AM fungal community
assembly: review of the elements of the
proposed model

Regional pool
AM fungi have species pools with distinct composi-
tion according to paleocontinents, although endemic
species are rare (Kivlin et al., 2011; Davison et al.,
2015). Regionally, observed AM fungal communities
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Figure 1 Applying the combination of a filter model of community assembly and neutral processes for AM fungi. The regional pool of
AM fungi consists of species present in the soil and in the roots of the host community. Through local or long-distance dispersal and
chance, species reach local habitats. The environmental filter prevents species whose environmental tolerances do not overlap with local
conditions from entering the community. The host filter allows colonization only for compatible fungal partners, thus further removing
species. The local community reflects the cumulative effects of these processes, and in turn influences them through feedbacks. Horizontal
interactions within the symbiotic community and with other non-host species also affect local communities. Local communities in turn
contribute to the regional species pools with autochtonous propagule input. The capital letters refer to different AM fungal species.
Ellipses with different lines depict different root system communities. Details of the depicted community assembly and coexistence model
elements can be found in the section 'Factors affecting AM fungal community assembly: review of the elements of the proposed model' in
the main text.
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Table 1 Fundamental questions in defining levels of biological organization for AM fungi

Level of biologi-
cal organisation

General definition Problem with usage for AM fungi Possible solutions

Individual In modular organisms,
an individual can be
defined:
• as a physically con-
tinuous unit, which is
separated from other
such units (ramet)
• a unit with uniform
genetic composition
(genet)

In AM fungi, these two definitions do not
delineate the same parts of the mycelium
(Rosendahl, 2008):
• genetically different AM fungi are able to
anastomose with each other (Chagnon, 2014) and
might form a continuous mycelium where nuclei
of different genetic compositions mingle (Young,
2009)
• a genetically uniform mycelium might be
physically disrupted
• because of asexual reproduction with no
recombination, different mycelia with the same
genetic composition can be found in large
geographical distance from each other
• 'ramet’ and ‘genet’ are used by some research-
ers; however, many use the terms ‘clone’, ‘strain’
and ‘isolate’ as with other microbes to grasp
different aspects of the concept of an individual

• DNA profiling of individuals using mitochon-
drial markers, because, in contrast to nuclear
DNA, the mitochondrial genome appears to be
genetically identical within mycelia (de la
Providencia et al., 2013; Daubois et al., 2016)

Species Some commonly
applied species con-
cepts for fungi are
(Moore et al., 2011):
• morphological: based
on morphological simi-
larity
• biological: based on
reproductive isolation
• phylogenetic: defin-
ing OTUs based on
genetic similarity

• Morphological: many AM fungal species are
unculturable and their appearance in roots varies
with the host
• Biological: no evidence of sexual reproduction,
so mating tests are not possible
• Phylogenetic: It is not clear what level, if any,
of genetic difference is a suitable proxy for
species or other levels of biologically interacting
units (Hao et al., 2011; Caruso et al., 2012b;
Powell, 2012)

• Morphological: traditional taxonomy of AM
fungal morphotypes is based on the character-
istics of spores
• phylogenetic:
– Fixed and named OTUs are available for the
sake of comparability between environmental
studies, based on the small subunit of the
ribosomal DNA (Öpik et al., 2010)
– Efforts are made to create a unified sequence-
based species delimitation of Glomeromycota
using multiple loci (Öpik et al., 2014)

Community Species with similar
ecology that coexist in
the same spatial region
(Chesson, 2000). Defini-
tions often include that
community members
must be able to interact
(for example, Whittaker,
1975)

At which spatial scale should the AM fungal
community be defined?

Adapting a spatially explicit, hierarchical com-
munity system from parasitology (Figure 2, see
also section 'Scale dependency: different assem-
bly rules for different spatial scales? An analogy
borrowed from parasite communities' in the
main text):
• AM fungi in a root fragment
• infracommunity: AM fungi in an entire root
system of one host
• component community: AM fungi in the root
systems of a population of one host species
• compound community: AM fungi in the root
systems of the host community (mixed root
samples from a sampling site)

Metacommunity Metacommunities are
spatially divided
species assemblages,
where dispersal among
communities is limited
(Morin, 2011)

The assemblage of AM fungal communities living
in the root systems of a plant community cannot
be easily described by the metacommunity
theory:
• instead of only dispersing between hosts by
propagules, AM fungi in different hosts might
interact or even be physically continuous with
AM fungi living in other root systems, forming
CMNs (Selosse et al., 2006), which are large,
interconnected networks of fungal hyphae that
are simultaneously connecting multiple hosts
• hosts are not passive islands:
– AM fungi can preferentially allocate nutrients
to high-quality hosts connected to the same CMN
(Fellbaum et al., 2014) and CMNs can provide
means of infochemical transport between con-
nected plants (Barto et al., 2011)
– AM fungi can modify the fitness of their hosts
depending on their identity. Furthermore,
responsiveness of hosts to AM fungal coloniza-
tion can change over time after the initial
colonization (Veresoglou et al., 2012; Mihaljevic,
2012a, b)

Application of metacommunity theory would
require modifications

Abbreviations: AM, arbuscular mycorrhizal; CMN, common mycorrhizal network; OTU, operational taxonomic unit.
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are spatially heterogenous, but temporally stable,
suggesting a fairly constant soil species pool from
which mycorrhizae form during the season (Davison
et al., 2012).

Dispersal and chance (neutral processes)
Propagules and vectors of dispersal in AM fungi.
AM fungi disperse by autochthonous (local mycelium
spread) and allochthonous propagules (spores
and other inoculum, such as hyphal fragments or
colonized root fragments from outside), with the
allochthonous propagules being less important locally
(Jumpponen and Egerton-Warburton, 2005). AM fungi
often have large spores, and many species are
distributed by zoochory (for example, through the
guts of rats (Janos et al., 1995), earthworms (Shapiro
et al., 1993) and collembolans (Klironomos and
Moutoglis, 1999) or on the hooves of bison (Lekberg
et al., 2011)) as opposed to wind, where their spores
are detected rarely (Egan et al., 2014). Thus, AM
fungal species are mostly limited to short-distance
dispersal. However, over long timespans, these
limited dispersal capabilities allow for a surprisingly
efficient spread of taxa (Davison et al., 2015).

Spatial community structure, dispersal limitation
and other stochastic processes. AM fungal commu-
nities are spatially structured, patchily distributed
even in relatively homogenous local environments
(Rosendahl and Stukenbrock, 2004; Mummey and
Rillig, 2008), which suggests that there are other
processes beyond environmental filtering that con-
tribute to the structure of AM fungal communities,
for example, dispersal limitation. The relative
importance of dispersal to environmental filtering
is scale-dependent and varies (soil type and dis-
persal ability, Lekberg et al., 2007; soil pH, C/N ratio,
phosphorus and dispersal, Dumbrell et al., 2010a;
soil temperature, plant biomes and dispersal, Kivlin
et al., 2011). Dispersal and other neutral processes
thus exhibit an effect size spectrum that can be
completely masked by extreme environmental het-
erogeneity or anthropogenic disturbance, resulting in
communities more dissimilar than expected under
the assumptions of neutral theory. On the other
hand, stochastic effects are also limited under very
homogeneous environmental conditions because of
niche effects (Caruso et al., 2012a).

Environmental filter
Niche partitioning along environmental gradients.
The assembly process and the coexistence of AM
fungi are influenced by various soil environmental
variables, such as pH, soil type, soil chemistry
and nutrient availability. As nutrient transport is a
function of AM fungi, the effect of nutrient avail-
ability is well studied (reviewed in Johnson, 2010).
The filtering role of the environment, when some
species from the regional pool are not present under

certain soil conditions, was shown in fertilizer
addition experiments: AM fungal phylotype diver-
sity decreased with increasing N and P availability
and some AM fungi were only found in specific soil
nutrient conditions (for example, Liu et al., 2012;
Camenzind et al., 2014; Liu et al., 2015).

Seasonality. AM fungi show temporal niche parti-
tioning over the course of the year. Previously rare
types might replace the dominant species (Husband
et al., 2002). As possible explanations for this shift,
both changing environment, for example, changes in
temperature and sunshine hours (which influence
the soil carbon pool, Dumbrell et al., 2011), and the
seasonal cycle of the plant community and phenol-
ogy were suggested.

Disturbance. Increasing agricultural land-use
intensity selectively removes rare AM fungal species
from the local community (Helgason et al., 1998;
Verbruggen et al., 2012). Heavy anthropogenic
disturbance, such as plowing, tillage and fungicide
treatment, can lower the number of AM fungal
species, abundance and root colonization while
favoring generalist species (Helgason et al., 1998;
Hijri et al., 2006; Helgason et al., 2007; Schnoor
et al., 2011). However, disturbance does not always
shift communities in a predictable way (Lekberg
et al., 2012) probably because of the dominance of
stochastic effects (Caruso et al., 2012a).

Host filter
One of the particular features of AM fungal commu-
nity assembly is the importance of the host filter
compared with free-living or facultatively symbiotic
organisms. Plants restrict AM fungal diversity in
roots (Johnson et al., 2004) and they also differen-
tially influence sporulation (Eom et al., 2000). Given
the obligatory symbiotic AM fungal lifestyle, the
existence of host effects could be obvious. The non-
evident detail in the host–AM fungal relationship is
the apparent lack of species-level specificity (there
are many fewer AM fungal species than plant
species, even though most land plants are mycor-
rhizal). As an explanation, it was proposed that being
able to colonize and to be colonized by a wider range
of partners has an evolutionary benefit, and that
environmental conditions affect the ability of plants
to differentially reward their symbionts (reviewed in
Walder and van der Heijden, 2015). In the field,
different plant species, and even plants of the same
species at different growth stages, associate with
different fungal communities from the same soil
(Gollotte et al., 2004; Sýkorová et al., 2007; Gosling
et al., 2013) and some AM fungi do not colonize
certain plants (Helgason et al., 2002). AM fungi differ
regarding how beneficial they are for hosts (Helgason
et al., 2007), and plants are able to reward better
fungal partners with photosynthates (Bever et al.,
2009; Kiers et al., 2011). The solution might be that
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host specificity does not happen at the species level,
but on an ecological level, where generalist AM
fungi interact with generalist plants while specia-
lists tend to occur in the roots of specialist plants
(Öpik et al., 2010; Davison et al., 2011). Further-
more, pairings of hosts and symbionts with similar
life history strategies (competitive, stress tolerant,
ruderal, as described for AM fungi in Chagnon
et al., 2013) are likely more beneficial. The

functional traits defining these strategies are often
conserved at a higher taxonomic level (Maherali
and Klironomos, 2007; Chagnon et al., 2013). Not
only the host itself but also neighboring plants
(Hausmann and Hawkes, 2009) and plant species
richness (Burrows and Pfleger, 2002; Engelmoer
and Kiers, 2015) influence fungal communities. In
addition, AM fungal preference regarding hosts also
exists (Davison et al., 2011).

Table 2 Problems and solution attempts in applying community ecology terms to AM fungi

Community
ecology term

Problems in using it in AM fungal
community ecology

Current solution attempts and their issues

Fitness The definition of fitness in other organisms
usually includes a measure of reproduc-
tion.
• As AM fungi are asexual organisms, how
can their fitness be defined?
• It is difficult to use a proxy for AM
fungal fitness, which could be used to
compare species, as:
(1) higher propagule abundance does not
necessarily translate to higher colonization
(2) there are significant allocation differ-
ences among species in growth of spores
versus hyphal network (Veresoglou and
Halley, 2012)
• AM fungal fitness always depends on
plant carbon, as they do not have inde-
pendent ways to take up carbon (Johnson,
2010)

• Spore production and root colonization rates are possible fitness
measures
• Marker gene copy numbers can be used as a proxy of root colonization
(Thonar et al., 2014). Distinguishing some AM fungal species in co-
colonized roots is now possible with species-specific quantitative real-
time PCR

Traits How to study AM fungal traits? • Traits in culture: traits are assigned to strains and might not be
representative of a species
• Transcriptomes of a single species: the study of the transcriptomes of
species (Tisserant et al., 2012) might explain perceived functional
redundancy (Peay et al., 2008) and provide mechanical understanding of
community assembly, but it suffers from the same problem
• Metatranscriptomes: solving the annotation problem in the emerging
field of metatranscriptomics might enable us to study traits in field
communities

Niche Dual niche of AM fungi in root and soil • AM fungi are obligate symbionts, but not only are they required to
colonize a root system to complete their life cycle, but also to forage in
the soil for nutrients and water
• Thus, they are affected by factors both within and outside the root
system at the same time
• The composition of AM fungal communities is different in the two
compartments (Hempel et al., 2007), and it is likely that forces governing
soil and root communities are different (Liu et al., 2012)
• AM fungal species differ in functional traits regarding spatial niches
(for example, to what extent do they colonize roots or soil), and these
traits are also conserved (Hart and Reader, 2002; Powell et al., 2009)

Bipartite
networks

How does the network theory describe
host–AM fungal interactions (Chagnon
et al., 2012)?

• AM fungal–plant networks regularly show nestedness (species interact
with a subset of the species generalists interact with) and modularity
(species tend to group into modules in which interactions are more
frequent than with the rest of the community; Öpik and Moora, 2012;
Verbruggen et al., 2012)
• These network characteristics may derive from overdominance of the
founder AM fungus (Dumbrell et al., 2010b), habitat heterogeneity,
specific selectivity in plant–AM fungal associations, plant–AM fungal
overlapped phenology or AM fungal competition within the root
(Montesinos-Navarro et al., 2012)
• However, in order to correctly apply network theory to AM fungal–
plant interactions, basic assumptions need to be verified, that is, detected
co-occurence must imply interactions (Caruso et al., 2012b)

Abbreviations: AM, arbuscular mycorrhizal; PCR, polymerase chain reaction.
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Non-host biotic interactions and feedbacks
Horizontal interactions between members of local
AM fungal communities. Past work has found
intense competition for root space (Cano and Bago,
2005; Engelmoer et al., 2014) and even competitive
exclusion (Hepper et al., 1988). As opposed to root
colonization, the ability of AM fungal species to
colonize soil did not influence coexistence (Maherali
and Klironomos, 2012). Phylogenetic overdispersion
promotes coexistence: communities of more dis-
tantly related and functionally different species
showed higher realized species richness (Maherali
and Klironomos, 2007). Conserved differences in
other functional traits, such as timing of spore
production and hyphal growth rate, metabolism of
photosynthates, P and N uptake, might alleviate
competition as well.

Despite the potential importance for commercial
use of fungal inocula, the effect of arrival order in
AM fungi is not well understood. Priority effects
were shown (Mummey et al., 2009); however, it was
recently observed that the resident AM fungi did not
suffer from reduced growth despite being invaded,
which makes competition for space an unlikely
explanation, and suggesting downregulation by the
host instead (Werner and Kiers, 2015).

Interactions with other non-host organisms. Negative
interactions with consumers (fungal grazers), pathogens
and parasites could reduce competition between AM
fungi. However, collembola feeding on AM fungi had
no effect on the community composition (Gange, 2000),
and parasitism has not yet been conclusively shown to
exist in AM fungi (Purin and Rillig, 2008). Either these
interactions are really not important for AM fungal
communities or we are limited by data.

AM fungi harbor bacteria associated with their
spores. These bacteria promote hyphal growth and
stimulate nutrient biodynamics. They might facilitate
not only the fungus, but the whole mycorrhizal system
by contributing to the suppression of soil-borne plant
pathogens and by adding nitrogen fixation to the
benefits of the plant (Cruz and Ishii, 2011).

Feedbacks: AM fungi as ecosystem engineers. AM
fungi significantly modify their habitat both in the
soil and in the plant in a way that influences their
own communities. In the soil they increase soil
aggregation and the water stability of the aggregates
by a variety of mechanisms, including hyphal
enmeshment (Rillig et al., 2015). Greater particle
size and pore space may in turn benefit hyphal
growth (Rillig and Steinberg, 2002).

They affect plant diversity and composition by
improving the nutrient status of their host plants
and by facilitating their hosts, which was shown to
induce shifts in plant communities (van der Heijden
et al., 1998). To harness this effect, enhancing
natural AM fungal communities is suggested as an
environmentally friendly weed-control option in
agricultural ecosystems (Cameron, 2010). On the

other hand, plant community composition also has
an effect on AM fungal communities, completing the
feedback loop.

Relative importance of different elements: possible
explanations for the idiosyncratic response of AM
fungi to biotic and abiotic variables
Despite the considerable literature that exists on the
host, abiotic environmental and neutral factors influ-
encing AM fungal community composition, there is
no consensus on their relative importance. AM fungi
have an idiosyncratic response to these variables. We
propose two hypotheses to explain this pattern.

‘Law of the minimum’: an idea from plant nutrition.
In agricultural science, the ‘law of the minimum’ is an
idea that the scarcest essential nutrient (the most
limiting factor) is the most important in determining
plant growth (Gorban et al., 2011). Similarly, but
stepping away from only thinking about resources,
the relative importance of assembly factors would
depend on the most restrictive component, and
the most limiting factor would explain the most
variability. Under non-filtering environmental condi-
tions, in an abiotically homogenous sampling area,
host effects would be relatively more important. A
strong environmental gradient that includes harsh
conditions unsuitable for certain species would
result in environmental filtering as the dominant
structuring force.

Scale dependency: different assembly rules for different
spatial scales? An analogy borrowed from parasite
communities. Studies on AM fungal communities
vary strongly in the spatial scale being addressed.
Definitions range from AM fungi found in a root piece
through an entire root system to a mixed root sample of
an entire site. As different assembly factors act on
different scales, explicitly considering the spatial
structure of AM fungal communities could lead to
a synthesis between contrasting responses to assembly
factors (for example, host versus abiotic environmental
filter). Parasitology defines a hierarchical, host-based,
scale-dependent community system (Figure 2 and
Table 1). In infra- and compound communities of fleas,
which also have varying levels of host specificity, the
relative importance of environmental and host effects
depends on the spatial scale (Linardi and Krasnov,
2013; Krasnov et al., 2015). AM fungal communities
have a similar host-based hierarchical spatial structure
(Figure 2); therefore, it is a compelling idea that the
relative importance of assembly factors depends on
the spatial scale in AM fungi too. Maherali and
Klironomos (2012) hypothesized that subplot-scale
interactions (infracommunity) such as competition
could determine coexistence, whereas the AM fungal
composition of a whole site (compound community)
would mostly depend on niche requirements or
climate (environmental filter). Consequently, AM
fungal communities are found to show phylogenetic

Community assembly and coexistence in communities of AM fungi
K Vályi et al

2346

The ISME Journal



clustering within study sites (Kivlin et al., 2011), with
sometimes negligible effects of the environment (Horn
et al., 2014), which might indicate facilitation between
species. At a global scale, the AM fungal community
composition was shown to be best predicted by spatial
distance, edaphic and climatic factors, and plant
community type (Kivlin et al., 2011; Davison et al.,
2015). To sum up, the scale dependency of the relative
importance of the elements of community assembly
and coexistence is well established in many organ-
isms; however, explicit consideration of spatial scale
in AM fungal community studies is still rare. An
example of how the relative importance of the
assembly processes might change with spatial scales
is shown in Figure 2.

Conclusion: community ecology from the
viewpoint of a microbial symbiont

We presented a conceptual framework of community
assembly and coexistence adapted to a microbial
symbiont group with a unique combination of char-
acteristics. The importance of factors influencing
obligate symbionts differs from those affecting free-
living organisms, or even facultative symbionts
(Linardi and Krasnov, 2013). The host–AM fungal
relationship, similarly to parasites, exhibits a hierarch-
ical spatial structure, which should be explicitly
incorporated into future studies, to enable the study
of the scale dependency of the relative importance
of elements of community assembly. Adapting a
symbiont-centered point of view in addition to con-
sidering how the host community is affected would
help to fill the knowledge gaps of coexistence research,
especially in the field of non-host interactions.

Outlook: how further research on AM
fungal communities could advance the
field of community assembly and
coexistence theory

Owing to the advance of high-throughput molecular
methods, researchers gained insight into the commu-
nities of specialized organisms, for example, the AM
fungal communities in plant roots. With the number
of AM fungal community studies rising, it is now
possible to start to piece together the mechanisms
influencing community assembly and coexistence.
By considering the unique combination of character-
istics in genetic makeup, physiology, niche and
dispersal of AM fungi, and highlighting problems in
applying community ecology concepts stemming from
these, we are getting closer to adapting community
assembly and coexistence models to them.

Taking levels of community organization related
to the host into account (infracommunities, com-
ponent communities and compound communities,
see Figure 2) can help reconcile contrasting results
regarding the relative importance of assembly
factors.

In AM fungi, where the effect of the host filter is so
significant, non-host biotic interactions, although
they might not be able to act as a filter in community
assembly, are still influencing community structure,
and future studies in this currently neglected field
might reveal more interesting relations.

Examining different assembly and coexistence
factors in a multitude of specialized microbial
groups would help advance the field of community
ecology by increasing the external validity of its
models and theories. Although it is important to

Figure 2 Hierarchical scale-dependent community system in AM fungi. At a given spatial (or temporal) scale, multiple processes
influence the assembly of AM fungal communities. Relative importance of assembly processes changes with spatial scale, causing
idiosyncrasy in response to different assembly factors, when the hierarchical spatial structure is not explicitly considered.
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transfer concepts from general ecology, it is critical
that these concepts be carefully evaluated before
application (Table 1): two examples are the applica-
tion of metacommunity concepts to symbiotic sys-
tems (Veresoglou et al., 2012) and the use of network
theory in mycorrhizal ecology (Caruso et al., 2012b);
in both cases it is important to verify the validity
of assumptions lest analyses be misleading. Emer-
ging concepts in community ecology, like metrics
for quantifying intransitive competition (Soliveres
et al., 2015) or community coalescence (Rillig et al.,
2015), will require similar validation to apply them
to specific microbial communities. Doing so can
lead to new hypotheses in the AM fungal and
broader community ecology, as in applying commu-
nity phylogenetics (Webb et al., 2002 ; Vamosi et al,
2009) to AM fungi: after carefully proving that AM
fungal traits related to spatial niche use are
conserved at a higher taxonomic level (Maherali
and Klironomos, 2007), this was used to generate
hypotheses and a theoretical framework on the
coupling of plant and AM fungal life history
strategies (Chagnon et al., 2013).

Answers to the questions of community assembly
and coexistence in AM fungi are increasingly required
in order to more successfully manage AM fungi for
application. Community composition influences eco-
system services, which is true also for AM fungi (van
der Heijden et al., 1998). Better understanding of AM
fungal communities could be a powerful tool in
mitigating the effects of global change, for example,
in agriculture and habitat restoration.
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