17 research outputs found
Identification of genetic overlap and novel risk loci for attention-deficit/hyperactivity disorder and bipolar disorder
Differential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.acceptedVersio
Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis
Publisher's version (útgefin grein)Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3‘ UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFβR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.We thank the individuals who participated in this study and the staff at the Icelandic Patient Recruitment Center and the deCODE genetics core facilities. Further to all our colleagues who contributed to the data collection and phenotypic characterization of clinical samples as well as to the genotyping and analysis of the whole-genome association data. This research has been conducted using the UK biobank Resource under Application Number ‘24711’.Peer Reviewe
Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura
Publisher Copyright: © 2023, The Author(s).Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.Peer reviewe
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Recommended from our members
Ancient and recycled sulfur sampled by the Iceland mantle plume
Stable sulfur isotope ratios of mid-ocean ridge and ocean island basalts (MORBs and OIBs) preserve unique information about early Earth processes and the long-term volatile cycles between Earth's mantle and the surface. Icelandic basalts present ideal material to examine the oldest known terrestrial mantle reservoir, accessed through a deep-rooted mantle plume, but their multiple sulfur isotope systematics have not been explored previously. Here, we present new sulfur concentration (30–1570 ppm) and isotope data (ẟ34S = −2.5 to +3.8‰ and Δ33S = −0.045 to +0.016‰; vs. Canyon Diablo Troilite) from a sample suite (n = 62) focused on subglacially erupted basaltic glasses obtained from Iceland's neovolcanic zones. Using these data along with trace element systematics to account for the effects of magmatic processes (degassing and immiscible sulfide melt formation) on ẟ34S, we show that primitive (MgO > 6 wt.%), least degassed glasses accurately record the ẟ34S signatures of their mantle sources. Compared to the depleted MORB source mantle (DMM; ẟ34S = −1.3±0.3‰), the Iceland mantle is shown to have a greater range of ẟ34S values between −2.5 and −0.1%. Similarly, Icelandic basalts are characterized by more variable and negatively shifted Δ33S values (−0.035 to +0.013‰) relative to DMM (0.004±006‰). Negative low-ẟ34S-Δ33S signatures are most prominent in basalts from the Snæfellsnes Volcanic Zone and the Kverkfjöll volcanic system, which also have the lowest, most MORB-like 3He/4He (8–9 R/RA, where RA is the 3He/4He of air) and the highest Ba/La (up to 12) in Iceland. We propose that subduction fluid-enriched, mantle wedge type material, possibly present in the North Atlantic upper mantle, constitutes a low-ẟ34S-Δ33S component in the Icelandic mantle. This suggests that volatile heterogeneity in Iceland, and potentially at other OIBs, may originate not only from diverse plume-associated mantle components, but also from a heterogeneous ambient upper mantle. By contrast, a set of samples with high 3He/4He (up to 25.9 R/RA) and negative μ182W anomalies define an ancient lower mantle reservoir with a near-chondritic Δ33S and ẟ34S signature of ∼0‰. The difference between DMM and the high high-3He/4He mantle may reflect separate conditions during core-mantle differentiation, or a previously unidentified flux of sulfur from the core to the high-3He/4He reservoir
Identification of genetic overlap and novel risk loci for attention-deficit/hyperactivity disorder and bipolar disorder.
To access publisher's full text version of this article click on the hyperlink belowDifferential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.United States Department of Health & Human Services
National Institutes of Health (NIH) - USA
Research Council of Norway
SouthEast Norway Regional Health Authority
KG Jebsen Foundatio
Identification of genetic loci shared between ADHD, intelligence and educational attainment
Background
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that is consistently associated with lower levels of educational attainment. A recent large genome-wide association study identified common gene variants associated with ADHD, but most of the genetic architecture remains unknown.
Methods
We analyzed independent genome-wide association study summary statistics for ADHD (19,099 cases and 34,194 controls), educational attainment ( N = 842,499), and general intelligence ( N = 269,867) using a conditional/conjunctional false discovery rate (FDR) statistical framework that increases power of discovery by conditioning the FDR on overlapping associations. The genetic variants identified were characterized in terms of function, expression, and biological processes.
Results
We identified 58 linkage disequilibrium–independent ADHD-associated loci (conditional FDR < 0.01), of which 30 were shared between ADHD and educational attainment or general intelligence (conjunctional FDR < 0.01) and 46 were novel risk loci for ADHD.
Conclusions
These results expand on previous genetic and epidemiological studies and support the hypothesis of a shared genetic basis between these phenotypes. Although the clinical utility of the identified loci remains to be determined, they can be used as resources to guide future studies aiming to disentangle the complex etiologies of ADHD, educational attainment, and general intelligence