1,617 research outputs found

    Paper Session II-C - Technology Transfer and The Office of Advanced Concepts and Technology

    Get PDF
    NASA has a continuing mission to develop and transfer advanced technologies for the benefit of government space programs, the aerospace industry and the nation\u27s economy. In October, 1992, the NASA Administrator created a new Office of Advanced Concepts and Technology (OACT) that is comprised of both the former NASA Office of Commercial Programs (OCP) and the Space Technology Directorate of the Office of Aeronautics and Space Technology (OAST). The purposes of this new office include the development of innovative new technologies and concepts, and the rapid and effective transfer of technology into and from NASA as well as other organizations participating in the U.S. civil space program. In this paper, the character and interrelationships of OACT programs and plans will be summarized, including overarching strategic planning (e.g. the Integrated Technology Plan, ITP); space technology development efforts (for example, the NASA base and focused space research and technology programs); special technology innovation efforts (such as the Small Business Innovative Research, SBIR, program); and, efforts to promote commercial space development (e.g. the Centers for Commercial Development of Space, CCDSs). Particular emphasis will be given to technology transfer programs and efforts to improve technology transfer (such as the on-going development of the national technology transfer network). This paper will describe both existing technology transfer programs and current planning, as well as assessment and analysis activities aimed at enabling OACT to refine and energize NASA\u27s approaches to technology transfer. It will also evaluate recent recommendations made by internal and external review teams and others concerning technology transfer for the civil space program. These include a 1992 workshop on Technology Transfer and the Civil Space Program, as well as the results of two internal NASA-wide teams. Finally, the paper will identify options for the future of civil space technology transfer improvements

    Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography

    Get PDF
    We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset

    Restrictions and extensions of semibounded operators

    Full text link
    We study restriction and extension theory for semibounded Hermitian operators in the Hardy space of analytic functions on the disk D. Starting with the operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D) of measure zero, there is a densely defined Hermitian restriction of zd/dz corresponding to boundary functions vanishing on F. For every such restriction operator, we classify all its selfadjoint extension, and for each we present a complete spectral picture. We prove that different sets F with the same cardinality can lead to quite different boundary-value problems, inequivalent selfadjoint extension operators, and quite different spectral configurations. As a tool in our analysis, we prove that the von Neumann deficiency spaces, for a fixed set F, have a natural presentation as reproducing kernel Hilbert spaces, with a Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure

    Les controverses sociotechniques au prisme du Parlement

    Get PDF
    Le Parlement constitue un espace privilégié pour analyser le déploiement des controverses sociotechniques : non parce qu’il aurait la faculté de les résoudre, notamment via l’OPECST, mais parce qu’il offre de multiples occasions et modalités d’expression et de traitement de ces controverses en son sein. Espace hétérogène et poreux, il participe d’une nouvelle gouvernance des risques, plus soucieuse de leur stabilisation que de leur réduction définitive.The French Parliament offers an ideal place to analyze the unfolding of sociotechnical controversies. Not that it has any capacity to actually resolve these, including its office of science and technology; but rather because it offers a plurality of opportunities for controversies to play out within its two chambers. As a heterogeneous and porous institution, it takes part in a newly formed risk governance that aims to manage rather than definitely solve risk issues

    Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease:A Randomized Controlled Trial

    Get PDF
    Background: Studies of physical exercise in patients with Alzheimer’s disease (AD) are few and results have been inconsistent. Objective: To assess the effects of a moderate-to-high intensity aerobic exercise program in patients with mild AD. Methods: In a randomized controlled trial, we recruited 200 patients with mild AD to a supervised exercise group (60-min sessions three times a week for 16 weeks) or to a control group. Primary outcome was changed from baseline in cognitive performance estimated by Symbol Digit Modalities Test (SDMT) in the intention-to-treat (ITT) group. Secondary outcomes included changes in quality of life, ability to perform activities of daily living, and in neuropsychiatric and depressive symptoms. Results: The ITT analysis showed no significant differences between intervention and control groups in change from baseline of SDMT, other cognitive tests, quality of life, or activities of daily living. The change from baseline in Neuropsychiatric Inventory differed significantly in favor of the intervention group (mean: –3.5, 95% confidence interval (CI) –5.8 to –1.3, p = 0.002). In subjects who adhered to the protocol, we found a significant effect on change from baseline in SDMT as compared with the control group (mean: 4.2, 95% CI 0.5 to 7.9, p = 0.028), suggesting a dose-response relationship between exercise and cognition. Conclusions: This is the first randomized controlled trial with supervised moderate-to-high intensity exercise in patients with mild AD. Exercise reduced neuropsychiatric symptoms in patients with mild AD, with possible additional benefits of preserved cognition in a subgroup of patients exercising with high attendance and intensity.</jats:p

    In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT

    Get PDF
    To quantify the impact of cardiac motion on stent length measurements with Optical Coherence Tomography (OCT) and to demonstrate in vivo OCT imaging of implanted stents, without motion artefacts. The study consists of: clinical data evaluation, simulations and in vivo tests. A comparison between OCT-measured and nominal stent lengths in 101 clinically acquired pullbacks was carried out, followed by a simulation of the effect of cardiac motion on stent length measurements, experimentally and computationally. Both a commercial system and a custom OCT, capable of completing a pullback between two consecutive ventricular contractions, were employed. A 13 mm long stent was implanted in the left anterior descending branch of two atherosclerotic swine and imaged with both OCT systems. The analysis of the clinical OCT images yielded an average difference of 1.1 ± 1.6 mm, with a maximum difference of 7.8 mm and the simulations replicated the statistics observed in clinical data. Imaging with the custom OCT, yielded an RMS error of 0.14 mm at 60 BPM with the start of the acquisition synchronized to the cardiac cycle. In vivo imaging with conventional OCT yielded a deviation of 1.2 mm, relative to the length measured on ex-vivo micro-CT, while the length measured in the pullback acquired by the custom OCT differed by 0.20 mm. We demonstrated motion artefact-free OCT-imaging of implanted stents, using ECG triggering and a rapid pullback

    Thermo-elastic optical coherence tomography

    Get PDF
    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information
    corecore