18 research outputs found

    Evidence of magnetic accretion in an SW Sex star: discovery of variable circular polarization in LS Pegasi

    Get PDF
    We report on the discovery of variable circular polarization in the SW Sex star LS Pegasi. The observed modulation has an amplitude of ~0.3 % and a period of 29.6 minutes, which we assume as the spin period of the magnetic white dwarf. We also detected periodic flaring in the blue wing of Hbeta, with a period of 33.5 minutes. The difference between both frequencies is just the orbital frequency, so we relate the 33.5-min modulation to the beat between the orbital and spin period. We propose a new accretion scenario in SW Sex stars, based on the shock of the disk-overflown gas stream against the white dwarf's magnetosphere, which extends to the corotation radius. From this geometry, we estimate a magnetic field strength of B(1) ~ 5-15 MG. Our results indicate that magnetic accretion plays an important role in SW Sex stars and we suggest that these systems are probably Intermediate Polars with the highest mass accretion rates.Comment: Accepted by ApJ Letters. LaTeX, 14 pages, 3 PostScript figure

    Chasing the Identification of ASCA Galactic Objects (ChIcAGO): An X-Ray Survey of Unidentified Sources in the Galactic Plane. I. Source Sample and Initial Results

    Get PDF
    We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the F_x ~ 10^(–13) to 10^(–11) erg cm^(–2) s^(–1) X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3' of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the F_x ~ 10^(–13) to 10^(–11) erg cm^(–2) s^(–1) flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei

    Heavy element production in a compact object merger observed by JWST

    Get PDF
    The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs) 1, sources of high-frequency gravitational waves (GWs) 2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process) 3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers 4–6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7–12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe

    IPHAS discoveries of young stars towards Cyg OB2 and its southern periphery

    Get PDF
    We report on the discovery of over 50 strong H alpha emitting objects towards the large OB association Cyg OB2 and the H II region DR 15 on its southern periphery. This was achieved using the INT Photometric H alpha Survey of the Northern Galactic Plane (IPHAS), combined with follow-up spectroscopy using the MMT multi-object spectrometer HectoSpec. We present optical spectra, supplemented with optical r', i' and H alpha photometry from IPHAS, and near-infrared J, H and K photometry from Two Micron All Sky Survey. The position of the objects in the (J - H) versus (H - K) diagram strongly suggests most of them are young. Many show Ca II infrared triplet emission indicating that they are in a pre-main-sequence phase of evolution of T Tauri and Herbig Ae nature. Among these, we have uncovered pronounced clustering of T Tauri stars roughly a degree south of the centre of Cyg OB2, in an arc close to the H II region DR 15, and the radio ring nebula G79.29+0.46, for which we discuss its candidacy as a luminous blue variable. The emission-line objects towards Cyg OB2 itself could be the brightest most prominent component of a population of lower mass pre-main-sequence stars that has yet to be uncovered. Finally, we discuss the nature of the ongoing star formation in Cyg OB2 and the possibility that the central OB stars have triggered star formation in the periphery

    Identification of a population of X-ray-emitting massive stars in the galactic plane

    Get PDF
    We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf(+) (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Fe XXV emission lines in their X-ray spectra at similar to 6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way

    Ultraviolet-excess sources with a red/infrared counterpart: low-mass companions, debris discs and QSO selection

    Get PDF
    We present the result of the cross-matching between UV-excess sources selected from the UV-excess survey of the Northern Galactic Plane (UVEX) and several infrared surveys (2MASS, UKIDSS and WISE). From the position in the (J-H) vs. (H-K) colour-colour diagram we select UV-excess candidate white dwarfs with an M-dwarf type companion, candidates that might have a lower mass, brown-dwarf type companion, and candidates showing an infrared-excess only in the K-band, which might be due to a debris disk. Grids of reddened DA+dM and sdO+MS/sdB+MS model spectra are fitted to the U,g,r,i,z,J,H,K photometry in order to determine spectral types and estimate temperatures and reddening. From a sample of 964 hot candidate white dwarfs with (g-r)<0.2, the spectral energy distribution fitting shows that ~2-4% of the white dwarfs have an M-dwarf companion, ~2% have a lower-mass companion, and no clear candidates for having a debris disk are found. Additionally, from WISE 6 UV-excess sources are selected as candidate Quasi-Stellar Objects (QSOs). Two UV-excess sources have a WISE IR-excess showing up only in the mid-IR W3 band of WISE, making them candidate Luminous InfraRed Galaxies (LIRGs) or Sbc star-burst galaxies.Comment: Accepted for publication in MNRA

    Spectroscopic follow-up of ultraviolet-excess objects selected from the UVEX survey

    Get PDF
    We present the results of the first spectroscopic follow-up of 132 optically blue UV-excess sources selected from the UV-excess survey of the Northern Galactic Plane (UVEX). The UV-excess spectra are classified into different populations and grids of model spectra are fit to determine spectral types, temperatures, surface gravities and reddening. From this initial spectroscopic follow-up 95% of the UV-excess candidates turn out to be genuine UV-excess sources such as white dwarfs, white dwarf binaries, subdwarfs type O and B, emission line stars and QSOs. The remaining sources are classified as slightly reddened main-sequence stars with spectral types later than A0V. The fraction of DA white dwarfs is 47% with reddening smaller than E(B-V)<0.7 mag. Relations between the different populations and their UVEX photometry, Galac- tic latitude and reddening are shown. A larger fraction of UVEX white dwarfs is found at magnitudes fainter than g>17 and Galactic latitude smaller than |b|<4 compared to main-sequence stars, blue horizontal branch stars and subdwarfs

    Multi-Wavelength Observations of the Radio Magnetar PSR J1622–4950 and Discovery of its Possibly Associated Supernova Remnant

    No full text
    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant. If G333.9+0.0 is a supernova remnant then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggests that these two objects could be physically associated.Astronom
    corecore