187 research outputs found
Is Alpha-Synuclein Loss-of-Function a Contributor to Parkinsonian Pathology? Evidence from Non-human Primates
Accumulation of alpha-synuclein (α-syn) in Lewy bodies and neurites of midbrain dopamine neurons is diagnostic for Parkinson’s disease (PD), leading to the proposal that PD is a toxic gain-of-function synucleinopathy. Here we discuss the alternative viewpoint that α-syn displacement from synapses by misfolding and aggregation results in a toxic loss-of-function. In support of this hypothesis we provide evidence from our pilot study demonstrating that knockdown of endogenous α-syn in dopamine neurons of nonhuman primates reproduces the pattern of nigrostriatal degeneration characteristic of PD
Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson\u27s Disease.
UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson\u27s disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson\u27s disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson\u27s disease and related disorders.
SIGNIFICANCE STATEMENT: Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson\u27s disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson\u27s disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson\u27s disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson\u27s disease and potentially other basal-ganglia-related disorders
Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms
Implanted reuptake-deficient or wild-type dopaminergic neurons improve ON l-dopa dyskinesias without OFF-dyskinesias in a rat model of Parkinson's disease
OFF-l-dopa dyskinesias have been a surprising side-effect of intrastriatal foetal ventral mesencephalic transplantation in patients with Parkinson's disease. It has been proposed that excessive and unregulated dopaminergic stimulation of host post-synaptic striatal neurons by the grafts could be responsible for these dyskinesias. To address this issue we transplanted foetal dopaminergic neurons from mice lacking the dopamine transporter (DATKO) or from wild-type mice, into a rat model of Parkinson's disease and l-dopa-induced dyskinesias. Both wild-type and DATKO grafts reinnervated the host striatum to a similar extent, but DATKO grafts produced a greater and more diffuse increase in extra-cellular striatal dopamine levels. Interestingly, grafts containing wild-type dopaminergic neurons improved parkinsonian signs to a similar extent as DATKO grafts, but provided a more complete reduction of l-dopa induced dyskinesias. Neither DATKO nor wild-type grafts induced OFF-l-dopa dyskinesias. Behavioural and receptor autoradiography analyses demonstrated that DATKO grafts induced a greater normalization of striatal dopaminergic receptor supersensitivity than wild-type grafts. Both graft types induced a similar downregulation and normalization of PEnk and fosb/Δfosb in striatal neurons. In summary, DATKO grafts causing high and diffuse extra-cellular dompamine levels do not per se alter graft-induced recovery or produce OFF-l-dopa dyskinesias. Wild-type dopaminergic neurons appear to be the most effective neuronal type to restore function and reduce l-dopa-induced dyskinesias
Intrastriatal injection of alpha-synuclein preformed fibrils to rats results in L-DOPA reversible sensorimotor impairments and alterations in non-motor function
IntroductionThe alpha-synuclein (α-syn) preformed fibril (PFF) model of Parkinson’s disease (PD) is widely used in rodents to understand the mechanisms contributing to progression of pathology and neurodegeneration in the disorder. While the time course of pathology in the α-syn PFF rat model has been well characterized, it has been more challenging to determine reliable and reproducible behavior impairments. This is mainly due to α-syn PFF injections resulting in a partial nigrostriatal lesion that make motor anomalies more subtle and difficult to detect, just as in patients with PD. In the present study we sought to examine the effect of increased striatal distribution and injection quantity of α-syn PFFs in rats on accumulation of phosphorylated α-syn inclusions, nigrostriatal degeneration, sensorimotor behavior, and nonmotor function related to PD.MethodsMale Fischer 344 rats were injected unilaterally in the striatum with a total of 24μg α-syn PFFs distributed into three sites, or an equal volume of phosphate buffered saline (PBS) as a control condition. Sensorimotor function was assessed using a battery of behavioral tests sensitive to varying degrees of nigrostriatal neurodegeneration. Non-motor testing included assays for olfaction, emotional reactivity, cognitive function, and sleep.ResultsAt six months post injection, α-syn PFF rats displayed significant movement and somatosensory asymmetries compared with control rats. Time to initiate a forelimb step and time to contact an adhesive stimulus on the forepaw took significantly longer with the contralateral limb compared with the ipsilateral limb in α-syn PFF rats. Further, hindlimb stepping in the cylinder was significantly reduced in α-syn PFF-injected rats compared with controls. Cognitive function was also affected in the α-syn PFF rats, with investigation time significantly decreased in an object recognition test. Levodopa reversibility was observed in the movement initiation and cylinder tests. Postmortem analysis revealed a 55% loss of nigral tyrosine hydroxylase immunoreactive neurons and a 63% reduction in striatal dopamine content in α-syn PFF-injected rats.ConclusionThus, using the present α-syn PFF surgical parameters, sufficient nigrostriatal degeneration can be achieved to manifest significant motor and non-motor deficits. These rat α-syn PFF surgical parameters will be important for preclinical assessment of novel diseasemodifying therapies
Gene Silencing of Striatal Cav 1.3 Channels can Prevent Levodopa-Induced Dyskinesia in Parkinsonian Rats
PURPOSE: Parkinson’s Disease (PD) is a debilitating neurodegenerative disorder that affects dopaminergic neurons in the brain. Levodopa, the gold standard medication for treating PD, can lead to several side effects, with Levodopa-Induced Dyskinesia (LID) as most severe. LID are abnormal and involuntary movements of the limbs and/or trunk that arise from the loss of dendritic spines of medium spiny neurons associated with the over-activity of striatal Cav 1.3 channels. Gene knockdown of Cav 1.3 channels prior to inducing parkinsonism and administration of levodopa in rats has been reported to prevent LID. The purpose of this study was to determine the amount of Cav 1.3 protein knockdown after gene silencing. CHALLENGE: Cav 1.3 protein is present in very low amounts in the brain and is therefore notoriously difficult to quantify. EXPERIENCE: Rats were given unilateral injections of either control or sh-RNA to silence Cav 1.3 channels. This was followed by induction of parkinsonism via 6-OHDA and administration of levodopa prior to LID monitoring (blinded). Rat brain tissues were sectioned and stained using fluorescent dye and Cav 1.3 protein expression was analyzed using a confocal microscope. OUTCOME: The amount of Cav 1.3 protein knockdown is an important next step after analysis of gene knockdown. Targeted gene silencing of Cav 1.3 channels can be used as therapeutic approach for preventing/potentially reversing LID in PD patients. IMPACT: This study allowed learning and development of several new skills such as tissue sectioning and staining, animal handling, and confocal microscopy
The Role of Striatal Cav1.3 Calcium Channels in Therapeutics for Parkinson\u27s Disease
Parkinson\u27s disease (PD) is a relentlessly progressive neurodegenerative disorder with typical motor symptoms that include rigidity, tremor, and akinesia/bradykinesia, in addition to a host of non-motor symptoms. Motor symptoms are caused by progressive and selective degeneration of dopamine (DA) neurons in the SN pars compacta (SNpc) and the accompanying loss of striatal DA innervation from these neurons. With the exception of monogenic forms of PD, the etiology of idiopathic PD remains unknown. While there are a number of symptomatic treatment options available to individuals with PD, these therapies do not work uniformly well in all patients, and eventually most are plagued with waning efficacy and significant side-effect liability with disease progression. The incidence of PD increases with aging, and as such the expected burden of this disease will continue to escalate as our aging population increases (Dorsey et al. Neurology 68:384-386, 2007). The daunting personal and socioeconomic burden has pressed scientists and clinicians to find improved symptomatic treatment options devoid side-effect liability and meaningful disease-modifying therapies. Federal and private sources have supported clinical investigations over the past two-plus decades; however, no trial has yet been successful in finding an effective therapy to slow progression of PD, and there is currently just one FDA approved drug to treat the antiparkinsonian side-effect known as levodopa-induced dyskinesia (LID) that impacts approximately 90% of all individuals with PD. In this review, we present biological rationale and experimental evidence on the potential therapeutic role of the L-type voltage-gated Cav1.3 calcium (Ca) channels in two distinct brain regions, with two distinct mechanisms of action, in impacting the lives of individuals with PD. Our primary emphasis will be on the role of Cav1.3 channels in the striatum and the compelling evidence of their involvement in LID side-effect liability. We also briefly discuss the role of these same Ca channels in the SNpc and the longstanding interest in Cav1.3 in this brain region in halting or delaying progression of PD
Induction and Assessment of Levodopa-induced Dyskinesias in a Rat Model of Parkinson's Disease
- …
