24 research outputs found

    Investigation into pedestrian exposure to near-vehicle exhaust emissions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of diesel particulate matter (DPM) is known to have a negative impact on human health. Consequently, there are regulations and standards that limit the maximum concentrations to which persons may be exposed and the maximum concentrations allowed in the ambient air. However, these standards consider steady exposure over large spatial and time scales. Due to the nature of many vehicle exhaust systems, pedestrians in close proximity to a vehicle's tailpipe may experience events where diesel particulate matter concentrations are high enough to cause acute health effects for brief periods of time.</p> <p>Methods</p> <p>In order to quantify these exposure events, instruments which measure specific exhaust constituent concentrations were placed near a roadway and connected to the mouth of a mannequin used as a pedestrian surrogate. By measuring concentrations at the mannequin's mouth during drive-by events with a late model diesel truck, a representative estimate of the exhaust constituent concentrations to which a pedestrian may be exposed was obtained. Typical breathing rates were then multiplied by the measured concentrations to determine the mass of pollutant inhaled.</p> <p>Results</p> <p>The average concentration of diesel particulate matter measured over the duration of a single drive-by test often exceeded the low concentrations used in human clinical studies which are known to cause acute health effects. It was also observed that higher concentrations of diesel particulate matter were measured at the height of a stroller than were measured at the mouth of a mannequin.</p> <p>Conclusion</p> <p>Diesel particulate matter concentrations during drive-by incidents easily reach or exceed the low concentrations that can cause acute health effects for brief periods of time. For the case of a particularly well-tuned late-model year vehicle, the mass of particulate matter inhaled during a drive-by incident is small compared to the mass inhaled daily at ambient conditions. On a per breath basis, however, the mass of particulate matter inhaled is large compared to the mass inhaled at ambient conditions. Finally, it was determined that children, infants, or people breathing at heights similar to that of a passing vehicle's tailpipe may be exposed to higher concentrations of particulate matter than those breathing at higher locations, such as adults standing up.</p

    Discovery That Theonellasterol a Marine Sponge Sterol Is a Highly Selective FXR Antagonist That Protects against Liver Injury in Cholestasis

    Get PDF
    Background: The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions. Principal Findings: Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTa, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4. Conclusions: FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible strategy to target obstructive cholestasis

    Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization

    Get PDF
    Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC), transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001) in ALV-J infected birds than in non-infected ones

    Towards the Establishment of a Porcine Model to Study Human Amebiasis

    Get PDF
    BACKGROUND: Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS: We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS: The pig model could help with simultaneously studying intestinal and extraintestinal lesion development
    corecore