20 research outputs found

    Electrowetting on paper for electronic paper display

    No full text
    ABSTRACT The use of paper as a material for various device applications (such as microfluidics and energy storage) is very attractive given its flexibility, versatility, and low cost. Here we demonstrate that electrowetting (EW) devices can be readily fabricated on paper substrates. Several categories of paper have been investigated for this purpose, with the surface coating, roughness, thickness, and water uptake, among the most important properties. The critical parameter for EW devices is the water contact angle (CA) change with applied voltage. EW devices on paper exhibit characteristics very close to those of conventional EW devices on glass substrates. This includes a large CA change in oil ambient (90-95°), negligible hysteresis (∼2°), and fast switching times of ∼20 ms. These results indicate the promise of low-cost paper-based EW devices for video rate flexible e-paper on paper

    Quantitative Detection in Lateral Flow Immunoassay Using Integrated Organic Optoelectronics

    No full text

    Triaxial Electrospun Nanofiber Membranes for Controlled Dual Release of Functional Molecules

    No full text
    A novel dual drug delivery system is presented using triaxial structured nanofibers, which provides different release profiles for model drugs separately loaded in either the sheath or the core of the fiber. Homogenous, coaxial and triaxial fibers containing a combination of materials (PCL, polycaprolactone; PVP, polyvinylpyrrolidone) were fabricated. The drug release profiles were simulated using two color dyes (KAB, keyacid blue; KAU, keyacid uranine), whose release in physiological solution was measured using optical absorption as a function of time. To reach the level of 80% release of encapsulated dye from core, triaxial fibers with a PCL intermediate layer exhibited a ∼24Ă— slower release than that from coaxial fibers. At the same time, the hygroscopic sheath layer of the triaxial fibers provided an initial burst release (∼ 80% within an hour) of a second dye as high as that from conventional single and coaxial fibers. The triaxial fiber membrane provides both a quick release from the outer sheath layer for short-term treatment and a sustained release from the fiber core for long-term treatment. The intermediate layer between inner core and outer sheath acts as a barrier to prevent leaching from the core, which can be especially important when the membranes are used in wet application. The formation of tri/multiaxially electrospun nanofibrous membranes will be greatly beneficial for biomedical applications by enabling different release profiles of two different drugs from a membrane

    Selective pH-Responsive Core–Sheath Nanofiber Membranes for Chem/Bio/Med Applications: Targeted Delivery of Functional Molecules

    No full text
    Core–sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core–sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core–sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core–sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films

    Contrast-Enhancement in Black Dielectric Electroluminescent Devices

    No full text
    Abstract-A high contrast electroluminescent (EL) device structure is presented. The diffuse luminous reflectivity from the metal/dielectric/phosphor/indium-tin-oxide/glass EL device structure is 3%. A Eu-doped GaN phosphor is used to demonstrate the contrast-enhanced operation. Low reflectivity is achieved by inserting a light-absorbing black thick-film BaTiO 3 layer between the phosphor and the rear metal electrode. In addition to providing contrast enhancement, the opaque thick dielectric film exhibits capacitance and high voltage reliability (40 nF/cm 2 , dielectric constant 500-1000, breakdown field 0 1-0 4 MV/cm) similar to that of the highest performance transparent thin-film dielectrics. An EL device luminance of only 20 cd/m 2 is sufficient for a display contrast ratio of 10:1 under 140 lux indoor ambient lighting (illumination). Under sunlight illumination of 100 000 lux, a display contrast ratio of 3:1 is expected with application of additional contrast enhancement techniques

    Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers

    No full text
    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime
    corecore