39 research outputs found

    Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases

    Full text link
    We present and characterize an experimental system in which we achieve the integration of an ultrahigh finesse optical cavity with a Bose-Einstein condensate (BEC). The conceptually novel design of the apparatus for the production of BECs features nested vacuum chambers and an in-vacuo magnetic transport configuration. It grants large scale spatial access to the BEC for samples and probes via a modular and exchangeable "science platform". We are able to produce \87Rb condensates of five million atoms and to output couple continuous atom lasers. The cavity is mounted on the science platform on top of a vibration isolation system. The optical cavity works in the strong coupling regime of cavity quantum electrodynamics and serves as a quantum optical detector for single atoms. This system enables us to study atom optics on a single particle level and to further develop the field of quantum atom optics. We describe the technological modules and the operation of the combined BEC cavity apparatus. Its performance is characterized by single atom detection measurements for thermal and quantum degenerate atomic beams. The atom laser provides a fast and controllable supply of atoms coupling with the cavity mode and allows for an efficient study of atom field interactions in the strong coupling regime. Moreover, the high detection efficiency for quantum degenerate atoms distinguishes the cavity as a sensitive and weakly invasive probe for cold atomic clouds

    MIPAS measurements of upper tropospheric C2H6 and O3 during the southern hemispheric biomass burning season in 2003

    Get PDF
    Under cloud free conditions, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) provides measurements of spectrally resolved limb radiances down to the upper troposphere. These are used to infer global distributions of mixing ratios of atmospheric constituents in the upper troposphere and the stratosphere. From 21 October to 12 November 2003, MIPAS observed enhanced amounts of upper tropospheric C2H6 (up to about 400 pptv) and ozone (up to about 80 ppbv). The absolute values of C2H6, however, may be systematically low by about 30% due to uncertainties of the spectroscopic data used. By means of trajectory calculations, the enhancements observed in the southern hemisphere are, at least partly, attributed to a biomass burning plume, which covers wide parts of the Southern hemisphere, from South America, the Atlantic Ocean, Africa, the Indian Ocean to Australia. The chemical composition of the part of the plume-like pollution belt associated with South American fires, where rainforest burning is predominant appears different from the part of the plume associated with southern African savanna burning. In particular, African savanna fires lead to a larger ozone enhancement than equatorial American fires. In this analysis, MIPAS observations of high ozone were disregarded where low CFC-11 (below 245 pptv) was observed, because this hints at a stratospheric component in the measured signal. Different type of vegetation burning (flaming versus smouldering combustion) has been identified as a candidate explanation for the different plume compositions

    Global distribution of mean age of stratospheric air from MIPAS SF6 measurements

    Get PDF
    Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4–6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1 o standard error of 1%. From the global SF6 distributions, global daily and monthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1 o standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable degree. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model

    An Atom Laser with a cw Output Coupler

    Full text link
    We demonstrate a continuous output coupler for magnetically trapped atoms. Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is continuously extracted from a Bose- Einstein condensate. The intensity and kinetic energy of the output beam of this atom laser are controlled by a weak rf-field that induces spin flips between trapped and untrapped states. Furthermore, the output coupler is used to perform a spectroscopic measurement of the condensate, which reveals the spatial distribution of the magnetically trapped condensate and allows manipulation of the condensate on a micrometer scale.Comment: 4 pages, 4 figure

    Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa

    Get PDF
    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2′ to 60′ across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation

    Bestimmung der Vertikalprofile von Spurengasen aus MIPAS-Messungen unter Hinzunahme von a priori Wissen

    No full text
    In dieser Arbeit wurde untersucht, wie vorhandenes Vorwissen in die Bestimmung von Vertikalprofilen von Spurengasen aus MIPAS-Messungen eingebracht werden kann und wie sich dieses Vorwissen auf das Ergebnis auswirkt. Dazu wurden mehrere Retrievalverfahren miteinander verglichen und wissenschaftliche Analysemethoden bereitgestellt

    Regularisation in MIPAS ENVISAT Off-Line Constituent Retrieval: Strategy and Diagnostics

    No full text
    The regularisation applied in the MIPAS Level 2 off-line processor was outlined. Particular emphasis was put on strategic aspects and diagnosic tools allowing a quantitative assessment of the attainable data quality

    Constrained Constituent Retrieval in the MIPAS ENVISAT Level 2 Off-Line Processor

    No full text
    The retrieval method applied in the MIPAS level 2 off-line processor is described with regard to specific constraints aiming at optimised data quality. The data quality can be optimized either with respect to mimimisation of absolute or relative errors
    corecore