202 research outputs found

    Effect of the light on adenine nucleotide content of georeacting maize roots

    Get PDF
    Apical segments from maize roots of LG 11 and Orla 264 varieties georeacted, at least for the first few hours, only in light, while those of the Anjou 210 variety were georeactive both in light and darkness. The energy charge in the apical end of the two light geo-sensitive (LG and Orla) maize roots significantly increased in the light. In contrast, in Anjou root tips, the energy charge was already high in the dark and did not change significantly after light exposure. The time course of light-induced changes in adenine nucleotide contents in root tips was compared with varietal differences in georeactivity in light and darkness. The present data corroborate the hypothesis that a high energy state in the root tip is a prerequisite for the expression of the root reaction to gravit

    The OASIS-Sustainable Nanomanufacturing Framework (OASIS-SNF): a new simplified approach to implement sustainable production in nanomanufacturing pilot lines and evaluate its sustainable manufacturing performance

    Get PDF
    The pilot production ecosystem deployed by the EU-project OASIS consists of 12 pilot lines (PLs) for the manufacture of nanomaterials, nano-intermediates and nano-enabled products, intended for the final production of lightweight multifunctional products, based on aluminium and polymer composites, for construction, energy, automotive and aeronautics. OASIS intends to deploy this nanomanufacturing ecosystem under a common umbrella of sustainable production, to ensure a future competitive, quality, safe and environmentally friendly production of nanoproducts, in compliance with the applicable regulation. This paper introduces the new OASIS-Sustainable Nanomanufaturing Framework (OASIS-SNF) and some first results obtained during the initial stages of deployment in the PLs (diagnostic and planning stages). The adoption of the OASIS-SNF among the OASIS PLs is intended to enable them to sustainable manufacturing their nanoproducts, properly manage their sustainability priorities, and continually improve their sustainability performance (management and results).The project OASIS received funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreement NÂș 814581. This paper reflects only the authors’ views, and the Commission is not responsible for any use that may be made of the information contained therein

    Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice

    Get PDF
    The qualitative nature (i.e. integrable vs. chaotic) of the translational dynamics of a three-level atom in an optical lattice is shown to be controllable by varying the relative laser phase of two standing wave lasers. Control is explained in terms of the nonadiabatic transition between optical potentials and the corresponding regular to chaotic transition in mixed classical-quantum dynamics. The results are of interest to both areas of coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter

    How variation in head pitch could affect image matching algorithms for ant navigation

    Get PDF
    Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant’s visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance

    Isotope Shift in the Dielectronic Recombination of Three-electron \u3csup\u3eA\u3c/sup\u3eNd⁔⁷âș

    Get PDF
    Isotope shifts in dielectronic recombination spectra were studied for Li-like ANd57+ ions with A = 142 and A = 150. From the displacement of resonance positions energy shifts ÎŽE142 150(2s-2p1/2) = 40.2(3)(6) meV [(stat)(sys)] and ÎŽE142 150(2s - 2p3/2) = 42.3(12)(20)meV of 2s - 2pj transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of 142 150ή⟹ r2⟩ = -1.36(1)(3) fm2. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    Effects of cyclic adenosine 3': 5'-monophosphate on phosphoprotein kinase and phosphatase fractions prepared from rat liver nuclei

    Full text link
    A soluble rat liver nuclear extract containing total RNA polymerase activities also exhibits appreciable amounts of protein kinase activity. This unfractionated protein kinase catalyzes the phosphorylation of both endogenous proteins and exogenous lysine-rich histone in the presence of [[gamma]-32P]ATP and Mg2+. The optimal concentration of Mg2+ is 5 m for histone phosphorylation and 25 m for the phosphorylation of endogenous proteins. Cyclic AMP has no effect on the phosphorylation of lysine-rich histone by this unfractionated nuclear protein kinase. However, addition of cyclic AMP causes a reduction in the 32P-labeling of an endogenous protein (CAI) which can be characterized by its mobility during SDS-acrylamide gel electrophoresis and elution in the unbound fraction of a DEAESephadex column. If CAI is first labeled with 32P and then incubated with 10-6 cyclic AMP under conditions where protein kinase activity is inhibited, the presence of the cyclic nucleotide causes a loss of the 32P-labeling of this protein, implying the activation of a substrate-specific protein phosphatase. When rat liver RNA polymerases are purified by DEAE-Sephadex chromatography, protein kinase activity is found in the unbound fraction and in those column fractions containing RNA polymerase I and II. The fractionated protein kinases exhibit different responses to cyclic AMP, the unbound protein kinase being stimulated and the RNA polymerase-associated protein kinases being dramatically inhibited. A second protein (CAII) whose phosphorylated state is modified by cyclic AMP is found within the DEAE-Sephadex column fractions containing RNA polymerase II. The cyclic nucleotide in this case appears to reduce labeling of CAII by inhibition of the protein kinase activity which co-chromatographs with both CAII and RNA polymerase II. Based on molecular weight estimates, neither CAI nor CAII appears to be an RNA polymerase subunit. The identity of CAI as a protein factor whose phosphorylated state influences nuclear RNA synthesis is suggested by the fact that addition of fractions containing CAI to purified RNA polymerase II inhibits the activity of this enzyme, but only if CAI has been previously incubated in the presence of cyclic AMP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22481/1/0000022.pd
    • 

    corecore