310 research outputs found

    Avionics systems integration technology

    Get PDF
    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context

    Fermion Masses and Coupling Unification in E6. Life in the Desert

    Full text link
    We present an E6E_6 Grand Unified model with a realistic pattern of fermion masses. All standard model fermions are unified in three fundamental 27-plets (i.e. supersymmetry is not invoked), which involve in addition right handed neutrinos and three families of vector like heavy quarks and leptons. The lightest of those can lie in the low TeV range, being accessible to future collider experiments. Due to the high symmetry, the masses and mixings of all fermions are closely related. The new heavy fermions play a crucial role for the quark and lepton mass matrices and the bilarge neutrino oscillations. In all channels generation mixing and CP{\cal CP} violation arise from a single antisymmetric matrix. The E6E_6 breaking proceeds via an intermediate energy region with SU(3)_L\tm SU(3)_R\tm SU(3)_C gauge symmetry and a discrete left-right symmetry. This breaking pattern leads in a straightforward way to the unification of the three gauge coupling constants at high scales, providing for a long proton lifetime. The model also provides for the unification of the top, bottom and tau Yukawa couplings and for new interesting relations in flavor and generation space.Comment: RevTex4, three ps figures, some correction

    Compensation for harm caused by nuclear installations: what’s the damage?

    Get PDF
    This is the author accepted manuscript. The final version is available from Emerald via the DOI in this record.Purpose: This paper aims to explain the changes to the liability regime for nuclear installations before reviewing the traditional heads of damage under the 1965 Act. It argues that while there is some welcome clarification of what amounts to an “occurrence” in the purposes of the 1965 Act, disappointingly, little has been done to clarify how concepts of personal injury and property damage under the Act sit alongside traditional tort notions leaving the law highly dependent on earlier, but not always consistent, case law. The paper then goes on to consider the impact of the new categories of compensation, introduced by the Order, evaluating the extent to which these draw upon EU law structures for environmental impairment liability. Again, it questions whether this approach will achieve sufficient clarity and certainty. Design/methodology/approach: This paper is a desk-based legal research. Findings: This study is a discussion of statutory material and case law. Originality/value: This paper is a first in-depth treatment of changes to liability principles in the Nuclear Installations Act 1965

    Experimental cross sections of Ho 165 (α,n) Tm 168 and Er 166 (α,n) Yb 169 for optical potential studies relevant for the astrophysical γ process

    Get PDF
    Background: Optical potentials are crucial ingredients for the prediction of nuclear reaction rates needed in simulations of the astrophysical γ process. Associated uncertainties are particularly large for reactions involving α particles. This includes (γ,α) reactions which are of special importance in the γ process. Purpose: The measurement of (α,n) reactions allows for an optimization of currently used α-nucleus potentials. The reactions Ho165(α,n) and Er166(α,n) probe the optical model in a mass region where γ process calculations exhibit an underproduction of p nuclei which is not yet understood. Method: To investigate the energy-dependent cross sections of the reactions Ho165(α,n) and Er166(α,n) close to the reaction threshold, self-supporting metallic foils were irradiated with α particles using the FN tandem Van de Graaff accelerator at the University of Notre Dame. The induced activity was determined afterwards by monitoring the specific β-decay channels. Results: Hauser-Feshbach predictions with a widely used global α potential describe the data well at energies where the cross sections are almost exclusively sensitive to the α widths. Increasing discrepancies appear towards the reaction threshold at lower energy. Conclusions: The tested global α potential is suitable at energies above 14 MeV, while a modification seems necessary close to the reaction threshold. Since the γ and neutron widths show non-negligible impact on the predictions, complementary data are required to judge whether or not the discrepancies found can be solely assigned to the α width. © 2014 American Physical Society.Peer reviewedFinal Accepted Versio

    Remote sensing: Physical principles, sensors and products, and the LANDSAT

    Get PDF
    Techniques of data acquisition by remote sensing are introduced in this teaching aid. The properties of the elements involved (radiant energy, topograph, atmospheric attenuation, surfaces, and sensors) are covered. Radiometers, photography, scanners, and radar are described as well as their products. Aspects of the LANDSAT system examined include the characteristics of the satellite and its orbit, the multispectral band scanner, and the return beam vidicon. Pixels (picture elements), pattern registration, and the characteristics, reception, and processing of LANDSAT imagery are also considered

    Non-local anomaly of the axial-vector current for bound states

    Get PDF
    We demonstrate that the amplitude <ργν(qˉγνγ5q)0><\rho\gamma|\partial_\nu (\bar q\gamma_\nu \gamma_5 q)|0> does not vanish in the limit of zero quark masses. This represents a new kind of violation of the classical equation of motion for the axial current and should be interpreted as the axial anomaly for bound states. The anomaly emerges in spite of the fact that the one loop integrals are ultraviolet-finite as guaranteed by the presence of the bound-state wave function. As a result, the amplitude behaves like 1/p2\sim 1/p^2 in the limit of a large momentum pp of the current. This is to be compared with the amplitude which remains finite in the limit p2p^2\to\infty. The observed effect leads to the modification of the classical equation of motion of the axial-vector current in terms of the non-local operator and can be formulated as a non-local axial anomaly for bound states.Comment: revtex, 4 pages, numerical value for κ\kappa in Eq. (19) is corrected, Eqs. (22) and (23) are modified. New references added. Results remain unchange

    Hierarchy plus anarchy in quark masses and mixings

    Full text link
    We introduce a new parameterisation of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parameterisation is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavour relations predicted by different textures, analysing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings.Comment: LaTeX, 18 pages, 16 PS figure

    Combining exclusive semi-leptonic and hadronic B decays to measure |V_ub|

    Get PDF
    The Cabibbo-Kobayashi-Maskawa matrix element |V_ub| can be extracted from the rate for the semi-leptonic decay B -> pi + l + antineutrino_l, with little theoretical uncertainty, provided the hadronic form factor for the B -> pi transition can be measured from some other B decay. In here, we suggest using the decay B -> pi J\psi. This is a color suppressed decay, and it cannot be properly described within the usual factorization approximation; we use instead a simple and very general phenomenological model for the b d J\psi vertex. In order to relate the hadronic form factors in the B -> pi J\psi and B -> pi + l + antineutrino_l decays, we use form factor relations that hold for heavy-to-light transitions at large recoil.Comment: Latex, 7 pages, no figure

    Form factors of heavy-to-light B decays at large recoil

    Get PDF
    General relations between the form factors of B decays to light mesons are derived using the heavy quark and large recoil expansion. On their basis the complete account of contributions of second order in the ratio of the light meson mass to the large recoil energy is performed. Both ground and excited final meson states are considered. It is shown that most of the known form factor relations remain valid after the inclusion of quadratic mass corrections. The validity of some of such relations requires additional equalities for the helicity amplitudes. It is found that all these relations and equalities are fulfilled in the relativistic quark model based on the quasipotential approach in quantum field theory. The contribution of 1/m_b corrections to the branching fraction of the rare radiative B decay is discussed.Comment: 23 pages, revte
    corecore