2,455 research outputs found

    'Do horses cause divorces?':Autoethnographic insights on family, relationships and resource-intensive leisure

    Get PDF
    Equestrian leisure is resource-intensive and requires significant investment of time, money, effort and emotion. In this paper we consider these demands within the context of personal and family relationships. Using autoethnographic methods we use our own relationships with horses and with our human partners to explore the issues and tensions than can arise when one person engages in such an intense and demanding leisure pursuit. We argue that support from partners is essential, but may often be underpinned by some resentment towards the horse(s) and the commitment they entail. Framed within the context of gendered family relationships and gendered leisure, we suggest that women’s involvement in resource-hungry leisure, such as equestrianism, is filtered through traditional gender power relations and that constant negotiation and compromise is required to enable women to engage in demanding leisure activities

    Analytical modeling of large-angle CMBR anisotropies from textures

    Full text link
    We propose an analytic method for predicting the large angle CMBR temperature fluctuations induced by model textures. The model makes use of only a small number of phenomenological parameters which ought to be measured from simple simulations. We derive semi-analytically the ClC^l-spectrum for 2l302\leq l\leq 30 together with its associated non-Gaussian cosmic variance error bars. A slightly tilted spectrum with an extra suppression at low ll is found, and we investigate the dependence of the tilt on the parameters of the model. We also produce a prediction for the two point correlation function. We find a high level of cosmic confusion between texture scenarios and standard inflationary theories in any of these quantities. However, we discover that a distinctive non-Gaussian signal ought to be expected at low ll, reflecting the prominent effect of the last texture in these multipoles

    Characterization of disturbance sources for LISA: torsion pendulum results

    Full text link
    A torsion pendulum allows ground-based investigation of the purity of free-fall for the LISA test masses inside their capacitive position sensor. This paper presents recent improvements in our torsion pendulum facility that have both increased the pendulum sensitivity and allowed detailed characterization of several important sources of acceleration noise for the LISA test masses. We discuss here an improved upper limit on random force noise originating in the sensor. Additionally, we present new measurement techniques and preliminary results for characterizing the forces caused by the sensor's residual electrostatic fields, dielectric losses, residual spring-like coupling, and temperature gradients.Comment: 11 pages, 8 figures, accepted for publication Classical and Quantum Gravit

    Cosmic String Wakes in Scalar-Tensor Gravities

    Full text link
    The formation and evolution of cosmic string wakes in the framework of a scalar-tensor gravity are investigated in this work. We consider a simple model in which cold dark matter flows past an ordinary string and we treat this motion in the Zel'dovich approximation. We make a comaprison between our results and previous results obtained in the context of General Relativity. We propose a mechanism in which the contribution of the scalar field to the evolution of the wakes may lead to a cosmological observation.Comment: Replaced version to be published in the Classical and Quantum Gravit

    Green's function for gravitational waves in FRW spacetimes

    Full text link
    A method for calculating the retarded Green's function for the gravitational wave equation in Friedmann-Roberson-Walker spacetimes, within the formalism of linearized Einstein gravity is developed. Hadamard's general solution to Cauchy's problem for second-order, linear partial differential equations is applied to the FRW gravitational wave equation. The retarded Green's function may be calculated for any FRW spacetime, with curved or flat spatial sections, for which the functional form of the Ricci scalar curvature RR is known. The retarded Green's function for gravitational waves propagating through a cosmological fluid composed of both radiation and dust is calculated analytically for the first time. It is also shown that for all FRW spacetimes in which the Ricci scalar curvatures does not vanish, R0R \neq 0, the Green's function violates Huygens' principle; the Green's function has support inside the light-cone due to the scatter of gravitational waves off the background curvature.Comment: 9 pages, FERMILAB-Pub-93/189-

    Type III Effector Activation via Nucleotide Binding, Phosphorylation, and Host Target Interaction

    Get PDF
    The Pseudomonas syringae type III effector protein avirulence protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]–interacting protein). RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resistance protein, leading to accelerated defense responses, cessation of pathogen growth, and hypersensitive host cell death at the infection site. We determined the structure of AvrB complexed with an AvrB-binding fragment of RIN4 at 2.3 Å resolution. We also determined the structure of AvrB in complex with adenosine diphosphate bound in a binding pocket adjacent to the RIN4 binding domain. AvrB residues important for RIN4 interaction are required for full RPM1 activation. AvrB residues that contact adenosine diphosphate are also required for initiation of RPM1 function. Nucleotide-binding residues of AvrB are also required for its phosphorylation by an unknown Arabidopsis protein(s). We conclude that AvrB is activated inside the host cell by nucleotide binding and subsequent phosphorylation and, independently, interacts with RIN4. Our data suggest that activated AvrB, bound to RIN4, is indirectly recognized by RPM1 to initiate plant immune system function

    Order within disorder: the atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5)

    Get PDF
    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta 2O5 and other a-T2O5 studies

    Essential Role of Urease in Germination of Nitrogen-Limited Arabidopsis thaliana Seeds

    Full text link

    Mutational analysis of the major soybean UreF paralogue involved in urease activation

    Get PDF
    The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO2 in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is ‘spoiled’ by the altered missense Ch02UreF proteins (‘epistatic dominant-negative’). In agreement with active ‘spoiling’ by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of ‘functional divergence’ of duplicated genes

    Life history traits and phenotypic selection among sunflower crop–wild hybrids and their wild counterpart: implications for crop allele introgression

    Get PDF
    Hybridization produces strong evolutionary forces. In hybrid zones, selection can differentially occur on traits and selection intensities may differ among hybrid generations. Understanding these dynamics in crop–wild hybrid zones can clarify crop-like traits likely to introgress into wild populations and the particular hybrid generations through which introgression proceeds. In a field experiment with four crop–wild hybrid Helianthus annuus (sunflower) cross types, we measured growth and life history traits and performed phenotypic selection analysis on early season traits to ascertain the likelihood, and routes, of crop allele introgression into wild sunflower populations. All cross types overwintered, emerged in the spring, and survived until flowering, indicating no early life history barriers to crop allele introgression. While selection indirectly favored earlier seedling emergence and taller early season seedlings, direct selection only favored greater early season leaf length. Further, there was cross type variation in the intensity of selection operating on leaf length. Thus, introgression of multiple early season crop-like traits, due to direct selection for greater early season leaf length, should not be impeded by any cross type and may proceed at different rates among generations. In sum, alleles underlying early season sunflower crop-like traits are likely to introgress into wild sunflower populations
    corecore