2,402 research outputs found

    Determination of the Telluric Water Vapor Absorption Correction for Astronomical Data Obtained from the Kuiper Airborne Observatory

    Get PDF
    The amount of telluric water vapor along the line of sight of the Kuiper Airborne Observatory telescope as obtained concommitantly on 23 flights is compared with the NASA-Ames Michelson interferometer and with the NOAA-Boulder radiometer. A strong correlation between the two determinations exists, and a method for computing the atmospheric transmission for a given radiometer reading is established

    Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.

    Get PDF
    A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine

    Global reconstruction of life-history strategies: a case study using tunas

    Get PDF
    1. Measuring the demographic parameters of exploited populations is central to predicting their vulnerability and extinction risk. However, current rates of population decline and species loss greatly outpace our ability to empirically monitor all populations that are potentially threatened. 2. The scale of this problem cannot be addressed through additional data collection alone, and therefore it is common practice to conduct population assessments based on surrogate data collected from similar species. However, this approach introduces biases and imprecisions that are difficult to quantify. Recent developments in hierarchical modelling have enabled missing values to be reconstructed based on the correlations between available life-history data, linking similar species based on phylogeny and environmental conditions. 3. However, these methods cannot resolve life-history variability among populations or species that are closely placed spatially or taxonomically. Here, theoretically motivated constraints that align with life-history theory offer a new avenue for addressing this problem. We describe a Bayesian hierarchical approach that combines fragmented, multi-species and multi-population data with established life-history theory, in order to objectively determine similarity between populations based on trait correlations (life-history trade-offs) obtained from model fitting. 4. We reconstruct 59 unobserved life-history parameters for 23 populations of tuna that sustain some of the world’s most valuable fisheries. Testing by cross-validation across different scenarios indicated that life-histories were accurately reconstructed when information was available for other populations of the same species. The reconstruction of several traits was also accurate for species represented by a single population, although credible intervals increased dramatically. 5. Synthesis and applications The described Bayesian hierarchical method provides access to life-history traits that are difficult to measure directly, and reconstructs missing life-history information useful for assessing populations and species that are directly or indirectly affected by human exploitation of natural resources. The method is particularly useful for examining populations that are spatially or taxonomically similar. The reconstructed life-history strategies described for the principal market tunas have immediate application to the world-wide management of tuna fisheries that use the steepness of the stock recruitment relationship to determine population productivity

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Future Evolution of Greenland\u27s Marine-Terminating Outlet Glaciers

    Get PDF
    Mass loss from the Greenland ice sheet (GrIS) has increased over the last two decades in response to changes in global climate, motivating the scientific community to question how the GrIS will contribute to sea-level rise on timescales that are relevant to coastal communities. Observations also indicate that the impact of a melting GrIS extends beyond sea-level rise, including changes to ocean properties and circulation, nutrient and sediment cycling, and ecosystem function. Unfortunately, despite the rapid growth of interest in GrIS mass loss and its impacts, we still lack the ability to confidently predict the rate of future mass loss and the full impacts of this mass loss on the globe. Uncertainty in GrIS mass loss projections in part stems from the nonlinear response of the ice sheet to climate forcing, with many processes at play that influence how mass is lost. This is particularly true for outlet glaciers in Greenland that terminate in the ocean because their flow is strongly controlled by multiple processes that alter their boundary conditions at the ice-atmosphere, ice-ocean, and ice-bed interfaces. Many of these processes change on a range of overlapping timescales and are challenging to observe, making them difficult to understand and thus missing in prognostic ice sheet/climate models. For example, recent (beginning in the late 1990s) mass loss via outlet glaciers has been attributed primarily to changing ice-ocean interactions, driven by both oceanic and atmospheric warming, but the exact mechanisms controlling the onset of glacier retreat and the processes that regulate the amount of retreat remain uncertain. Here we review the progress in understanding GrIS outlet glacier sensitivity to climate change, how mass loss has changed over time, and how our understanding has evolved as observational capacity expanded. Although many processes are far better understood than they were even a decade ago, fundamental gaps in our understanding of certain processes remain. These gaps impede our ability to understand past changes in dynamics and to make more accurate mass loss projections under future climate change. As such, there is a pressing need for (1) improved, long-term observations at the ice-ocean and ice-bed boundaries, (2) more observationally constrained numerical ice flow models that are coupled to atmosphere and ocean models, and (3) continued development of a collaborative and interdisciplinary scientific community

    Experimental application of sum rules for electron energy loss magnetic chiral dichroism

    Full text link
    We present a derivation of the orbital and spin sum rules for magnetic circular dichroic spectra measured by electron energy loss spectroscopy in a transmission electron microscope. These sum rules are obtained from the differential cross section calculated for symmetric positions in the diffraction pattern. Orbital and spin magnetic moments are expressed explicitly in terms of experimental spectra and dynamical diffraction coefficients. We estimate the ratio of spin to orbital magnetic moments and discuss first experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure
    • 

    corecore