26 research outputs found

    Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses

    Get PDF
    The extracellular matrix (ECM) of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed

    Transcriptome and metabolome profiling identify factors potentially involved in pro-vitamin A accumulation in cassava landraces

    Get PDF
    Cassava (Manihot esculenta Crantz) is a predominant food security crop in several developing countries. Its storage roots, rich in carbohydrate, are deficient in essential micronutrients, including provitamin A carotenoids.Increasing carotenoid content in cassava storage roots is important to reduce the incidence of vitamin A deficiency, a public health problem in sub-Saharan Africa. However, cassava improvement advances slowly, mainly due to limited information on the molecular factors influencing 13-carotene accumulation in cassava.To address this problem, we performed comparative transcriptomic and untargeted metabolic analyses of roots and leaves of eleven African cassava landraces ranging from white to deep yellow colour, to uncover regulators of carotenoid biosynthesis and accumulation with conserved function in yellow cassava roots.Sequence analysis confirmed the presence of a mutation, known to influence 13-carotene content, in PSY transcripts of deep yellow but not of pale yellow genotypes. We identified genes and metabolites with expression and accumulation levels significantly associated with 13-carotene content. Particularly an increased activity of the abscisic acid catabolism pathway together with a reduced amount of L-carnitine, may be related to the carot-enoid pathway flux, higher in yellow than in white storage roots. In fact, NCED_3.1 was specifically expressed at a lower level in all yellow genotypes suggesting that it could be a potential target for increasing carotenoid accumulation in cassava.These results expand the knowledge on metabolite compositions and molecular mechanisms influencing carotenoid biosynthesis and accumulation in cassava and provide novel information for biotechnological ap-plications and genetic improvement of cassava with high nutritional values

    Perspectives on the Application of Next-generation Sequencing to the Improvement of Africa’s Staple Food Crops

    Get PDF
    The persistent challenge of insufficient food, unbalanced nutrition, and deteriorating natural resources in the most vulnerable nations, characterized by fast population growth, calls for utilization of innovative technologies to curb constraints of crop production. Enhancing genetic gain by using a multipronged approach that combines conventional and genomic technologies for the development of stress-tolerant varieties with high yield and nutritional quality is necessary. The advent of next-generation sequencing (NGS) technologies holds the potential to dramatically impact the crop improvement process. NGS enables whole-genome sequencing (WGS) and re-sequencing, transcriptome sequencing, metagenomics, as well as high-throughput genotyping, which can be applied for genome selection (GS). It can also be applied to diversity analysis, genetic and epigenetic characterization of germplasm and pathogen detection, identification, and elimination. High-throughput phenotyping, integrated data management, and decision support tools form the necessary supporting environment for effective utilization of genome sequence information. It is important that these opportunities for mainstreaming innovative breeding strategies, enabled by cutting-edge “Omics” technologies, are seized in Africa; however, several constraints must be addressed before the benefit of NGS can be fully realized. African breeding programs must have access to high-throughput genotyping facilities, capacity in the application of genome selection and marker-assisted breeding must be built and supported by capacity in genomic analysis and bioinformatics. This chapter demonstrates how interventions with NGS-enabled innovative strategies can be applied to increase genetic gain with insights from the Consortium of International Agricultural Research (CGIAR) in general and the International Institute of Tropical Agriculture (IITA) in particular

    Gene Expression and Metabolite Profiling of Thirteen Nigerian Cassava Landraces to Elucidate Starch and Carotenoid Composition

    Get PDF
    The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between beta-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase beta-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and beta-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including beta-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-epsilon-cyclase (LCY epsilon), and beta-carotenoid hydroxylase (CHY beta) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and beta-carotene that could be candidates for biofortification by further breeding or plant biotechnological means

    Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops

    Get PDF
    Appropriately regulated gene expression requires a suitable promoter. A number of promoters have been isolated and shown to be functional in plants, but only a few of them activate transcription of transgenes at high levels constitutively. We report here the cloning and characterization of a novel, constitutively expressed promoter isolated from Cestrum yellow leaf curling virus (CmYLCV), a double-stranded DNA plant pararetrovirus belonging to the Caulimoviridae family. The CmYLCV promoter is highly active in callus, meristems and vegetative and reproductive tissues in Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum,Zea mays and Oryza sativa. Furthermore, the level of expression is comparable to, or higher than, that from the CaMV 35S, the 'ssuper-promoter' or the maize ubiquitin 1 promoters, three frequently used promoters in agricultural biotechnology. The heritable, strong and constitutive activity in both monocotyledonous and dicotyledonous plants, combined with the extremely narrow CmYLCV host range, makes the CmYLCV promoter an attractive tool for regulating transgene expression in a wide variety of plant specie

    EpiCass And CassavaNet4Dev Advanced Bioinformatics Workshop

    Get PDF
    EpiCass and CassavaNet4Dev are collaborative projects funded by the Swedish Research Council between the Swedish University of Agriculture (SLU) and the International Institute of Tropical Agriculture (IITA). The projects aim to investigate the influence of epigenetic changes on agricultural traits such as yield and virus resistance while also providing African students and researchers with advanced bioinformatics training and opportunities to participate in big data analysis events. The first advanced bioinformatics training workshop took place from May 16th to May 18th, 2022, followed by an online mini-symposium titled “Epigenetics and crop improvement” on May 19th. The symposium featured international speakers covering a wide range of topics related to plant epigenetics, cassava viral diseases, and cassava breeding strategies. A new online and on-site teaching model was developed for the three-day workshop to ensure maximum student participation across Western, Eastern, and Southern Africa. Initially planned in Nigeria, Kenya, Ethiopia, Tanzania, and Zambia, the workshop ultimately focused on Nigeria, Kenya, and Ethiopia due to a lack of qualified candidates in the other countries. Each classroom hosted 20 to 25 students, with at least one bioinformatician present for support. The classrooms were connected via video conferencing, whereas teachers located in different places in Africa and Europe joined the video stream to conduct teaching sessions. The workshop was divided into theoretical classes and hands-on sessions, where participants could run data analysis with support from online teachers and local bioinformaticians. To enable participants to run guided, CPU and RAM-intensive data analysis workflows and overcome local computing and internet access restrictions, a system of virtual machines (VMs) hosted in the cloud was developed. The teaching platform provided teaching and exercise materials to support the use of the VMs. Some students could not run heavy data analysis workflows due to unforeseen restrictions in the cloud. Currently, these issues have been solved and in the future all participants will have the opportunity to run the analysis steps independently in the cloud using the protocols hosted on the teaching platform

    Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling

    Get PDF
    Open Access JournalDioecy (distinct male and female individuals) combined with scarce to non-flowering are common features of cultivated yam (Dioscorea spp.). However, the molecular mechanisms underlying flowering and sex determination in Dioscorea are unknown. We conducted SuperSAGE transcriptome profiling of male, female and monoecious individuals to identify flowering and sex-related genes in white Guinea yam (D. rotundata). SuperSAGE analysis generated a total of 20,236 unique tags, of which 13,901 were represented by a minimum of 10 tags. Of these, 88 tags were significantly differentially expressed in male, female and monoecious plants. Of the 88 differentially expressed SuperSAGE tags, 18 corresponded to genes previously implicated in flower development and sex determination in multiple plant species. We validated the SuperSAGE data with quantitative real-time PCR (qRT-PCR)-based analysis of the expression of four candidate genes. Our findings suggest that mechanisms of flowering and sex determination are likely conserved in Dioscorea. We further investigated the flowering patterns of 1938 D. rotundata accessions representing diverse geographical origins over two years, revealing that over 85% of the accessions are either male or non-flowering, and that less than 15% are female, while monoecious plants are rare. Intensity of flowering appeared to be a function of sex, with male plants flowering more abundantly than female ones. Candidate genes identified in this study can be targeted with the aim to induce regular flowering in poor to non-flowering cultivars. Findings of the study provide important inputs for further studies aiming to overcome the challenge of flowering in yams and to improve the efficiency of yam breeding
    corecore