51 research outputs found

    High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity

    Get PDF
    Homologous recombination plays a key role in generating genetic diversity, while maintaining protein functionality. The mechanisms by which RecA enables a single-stranded segment of DNA to recognize a homologous tract within a whole genome are poorly understood. The scale by which homology recognition takes place is of a few tens of base pairs, after which the quest for homology is over. To study the mechanism of homology recognition, RecA-promoted homologous recombination between short DNA oligomers with different degrees of heterology was studied in vitro, using fluorescence resonant energy transfer. RecA can detect single mismatches at the initial stages of recombination, and the efficiency of recombination is strongly dependent on the location and distribution of mismatches. Mismatches near the 5' end of the incoming strand have a minute effect, whereas mismatches near the 3' end hinder strand exchange dramatically. There is a characteristic DNA length above which the sensitivity to heterology decreases sharply. Experiments with competitor sequences with varying degrees of homology yield information about the process of homology search and synapse lifetime. The exquisite sensitivity to mismatches and the directionality in the exchange process support a mechanism for homology recognition that can be modeled as a kinetic proofreading cascade.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/NuclAcidRes2006.pdf http://nar.oxfordjournals.org/cgi/content/short/34/18/502

    UV-induced mutagenesis in Escherichia coli SOS response: A quantitative model

    Get PDF
    Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein-protein binding and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long term memory associated with the accumulation of UmuD'. Together, these provide a tight regulation of mutagenesis resulting, we show, in a "digital" turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biol. 3, e238) is the result of a positive feedback from Pol V to RecA filaments.Comment: 21 pages, 10 figure

    Universality of Persistence Exponents in Two-Dimensional Ostwald Ripening

    Get PDF
    We measured persistence exponents θ ( ϕ ) of Ostwald ripening in two dimensions, as a function of the area fraction ϕ occupied by coarsening domains. The values of θ ( ϕ ) in two systems, succinonitrile and brine, quenched to their liquid-solid coexistence region, compare well with one another, providing compelling evidence for the universality of the one-parameter family of exponents. For small ϕ , θ ( ϕ ) ≃ 0.39 ϕ , as predicted by a model that assumes no correlations between evolving domains. These constitute the first measurements of persistence exponents in the case of phase transitions with a conserved order parameter

    Impaired cell-cell communication in the multicellular cyanobacterium Anabaena affects carbon uptake, photosynthesis, and the cell wall

    Get PDF
    Cell-cell communication is an essential attribute of multicellular organisms. The effects of perturbed communication were studied in septal protein mutants of the heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 model organism. Strains bearing sepJ and sepJ/fraC/fraD deletions showed differences in growth, pigment absorption spectra, and spatial patterns of expression of the hetR gene encoding a heterocyst differentiation master regulator. Global changes in gene expression resulting from deletion of those genes were mapped by RNA sequencing analysis of wild-type and mutant strains, both under nitrogen-replete and nitrogen-poor conditions. The effects of sepJ and fraC/fraD deletions were non-additive, and perturbed cell-cell communication led to significant changes in global gene expression. Most significant effects, related to carbon metabolism, included increased expression of genes encoding carbon uptake systems and components of the photosynthetic apparatus, as well as decreased expression of genes encoding cell wall components related to heterocyst differentiation and to polysaccharide export.Peer reviewe

    Noise in timing and precision of gene activities in a genetic cascade

    Get PDF
    Biological developmental pathways require proper timing of gene expression. We investigated timing variations of defined steps along the lytic cascade of bacteriophage λ. Gene expression was followed in individual lysogenic cells, after induction with a pulse of UV irradiation. At low UV doses, some cells undergo partial induction and eventually divide, whereas others follow the lytic pathway. The timing of events in cells committed to lysis is independent of the level of activation of the SOS response, suggesting that the lambda network proceeds autonomously after induction. An increased loss of temporal coherence of specific events from prophage induction to lysis is observed, even though the coefficient of variation of timing fluctuations decreases. The observed temporal variations are not due to cell factors uniformly dilating the timing of execution of the cascade. This behavior is reproduced by a simple model composed of independent stages, which for a given mean duration predicts higher temporal precision, when a cascade consists of a large number of steps. Evidence for the independence of regulatory modules in the network is presented

    Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments

    Get PDF
    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism

    Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli

    Get PDF
    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli. In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Furdependent, switch-like activation instead of a graded response to iron deprivation.Israel Science Foundation [514415 to J.S.]; Feinberg Foundation Visiting Faculty Program ( to J.M.-G.); MICINN (Spain) [FIS2012-32349 to J.M.-G.]; Intramural Research Program of the National Institutes of Health (to D.L.C.); National Cancer Institute (to D.L.C.); Center for Cancer Research (to D.L.C.); Siegfried and Irma Ullman Professorial Chair ( to J. S.). Funding for open access charge: Israel Science Foundation

    Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism

    Get PDF
    Under nitrogen deprivation, the one-dimensional cyanobacterial organism Anabaena sp. PCC 7120 develops patterns of single, nitrogen-fixing cells separated by nearly regular intervals of photosynthetic vegetative cells. We study a minimal, stochastic model of developmental patterns in Anabaena that includes a nondiffusing activator, two diffusing inhibitor morphogens, demographic fluctuations in the number of morphogen molecules, and filament growth. By tracking developing filaments, we provide experimental evidence for different spatiotemporal roles of the two inhibitors during pattern maintenance and for small molecular copy numbers, justifying a stochastic approach. In the deterministic limit, the model yields Turing patterns within a region of parameter space that shrinks markedly as the inhibitor diffusivities become equal. Transient, noise-driven, stochastic Turing patterns are produced outside this region, which can then be fixed by downstream genetic commitment pathways, dramatically enhancing the robustness of pattern formation, also in the biologically relevant situation in which the inhibitors' diffusivities may be comparable

    Effects of post-transcriptional regulation on phenotypic noise

    Get PDF
    ABSTRACT Cell-to-cell variations in protein abundance, called noise, give rise to phenotypic variability between isogenic cells. Studies of noise have focused on stochasticity introduced at transcription, yet the effects of post-transcriptional regulatory processes on noise remain unknown. We study the effects of RyhB, a small-RNA of Escherichia coli produced on iron stress, on the phenotypic variability of two of its downregulated target proteins, using dual chromosomal fusions to fluorescent reporters and measurements in live individual cells. The total noise of each of the target proteins is remarkably constant over a wide range of RyhB production rates despite cells being in stress. In fact, coordinate downregulation of the two target proteins by RyhB reduces the correlation between their levels. Hence, an increase in phenotypic variability under stress is achieved by decoupling the expression of different target proteins in the same cell, rather than by an increase in the total noise of each. Extrinsic noise provides the dominant contribution to the total protein noise over the total range of RyhB production rates. Stochastic simulations reproduce qualitatively key features of our observations and show that a feed-forward loop formed by transcriptional extrinsic noise, an sRNA and its target genes exhibits strong noise filtration capabilities
    corecore