1,095 research outputs found
Saturation of Cs2 Photoassociation in an Optical Dipole Trap
We present studies of strong coupling in single-photon photoassociation of
cesium dimers using an optical dipole trap. A thermodynamic model of the trap
depletion dynamics is employed to extract absolute rate coefficents. From the
dependence of the rate coefficient on the photoassociation laser intensity, we
observe saturation of the photoassociation scattering probability at the
unitarity limit in quantitative agreement with the theoretical model by Bohn
and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power
broadening of the resonance width is measured. We could not observe an
intensity dependent light shift in contrast to findings for lithium and
rubidium, which is attributed to the absence of a p or d-wave shape resonance
in cesium
A solid state light-matter interface at the single photon level
Coherent and reversible mapping of quantum information between light and
matter is an important experimental challenge in quantum information science.
In particular, it is a decisive milestone for the implementation of quantum
networks and quantum repeaters. So far, quantum interfaces between light and
atoms have been demonstrated with atomic gases, and with single trapped atoms
in cavities. Here we demonstrate the coherent and reversible mapping of a light
field with less than one photon per pulse onto an ensemble of 10 millions atoms
naturally trapped in a solid. This is achieved by coherently absorbing the
light field in a suitably prepared solid state atomic medium. The state of the
light is mapped onto collective atomic excitations on an optical transition and
stored for a pre-programmed time up of to 1 mu s before being released in a
well defined spatio-temporal mode as a result of a collective interference. The
coherence of the process is verified by performing an interference experiment
with two stored weak pulses with a variable phase relation. Visibilities of
more than 95% are obtained, which demonstrates the high coherence of the
mapping process at the single photon level. In addition, we show experimentally
that our interface allows one to store and retrieve light fields in multiple
temporal modes. Our results represent the first observation of collective
enhancement at the single photon level in a solid and open the way to multimode
solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200
Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles
We report an interference experiment of spontaneous emission of light from
two distant solid-state ensembles of atoms that are coherently excited by a
short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals
with channel waveguides, which are placed in the two arms of a Mach-Zehnder
interferometer. The light that is spontaneously emitted after the excitation
pulse shows first-order interference. By a strong collective enhancement of the
emission, the atoms behave as ideal two-level quantum systems and no which-path
information is left in the atomic ensembles after emission of a photon. This
results in a high fringe visibility of 95%, which implies that the observed
spontaneous emission is highly coherent
Distributed Graph Clustering using Modularity and Map Equation
We study large-scale, distributed graph clustering. Given an undirected
graph, our objective is to partition the nodes into disjoint sets called
clusters. A cluster should contain many internal edges while being sparsely
connected to other clusters. In the context of a social network, a cluster
could be a group of friends. Modularity and map equation are established
formalizations of this internally-dense-externally-sparse principle. We present
two versions of a simple distributed algorithm to optimize both measures. They
are based on Thrill, a distributed big data processing framework that
implements an extended MapReduce model. The algorithms for the two measures,
DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality
measures is straight-forward. We conduct an extensive experimental study on
real-world graphs and on synthetic benchmark graphs with up to 68 billion
edges. Our algorithms are fast while detecting clusterings similar to those
detected by other sequential, parallel and distributed clustering algorithms.
Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is
up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more
details, more results; v2: extended experiments to include comparison with
competing algorithms, shortened for submission to Euro-Par 201
Vector-like contributions from Optimized Perturbation in the Abelian Nambu--Jona-Lasinio model for cold and dense quark matter
Two-loop corrections for the standard Abelian Nambu-Jona-Lasinio model are
obtained with the Optimized Perturbation Theory (OPT) method. These
contributions improve the usual mean-field and Hartree-Fock results by
generating a suppressed term, which only contributes at finite chemical
potential. We take the zero temperature limit observing that, within the OPT,
chiral symmetry is restored at a higher chemical potential , while the
resulting equation of state is stiffer than the one obtained when mean-field is
applied to the standard version of the model. In order to understand the
physical nature of these finite contributions, we perform a numerical
analysis to show that the OPT quantum corrections mimic effective repulsive
vector-vector interaction contributions. We also derive a simple analytical
approximation for the mass gap, accurate at the percent level, matching the
mean-field approximation extended by an extra vector channel to OPT. For the effective vector coupling matching OPT is numerically close
(for the Abelian model) to the Fierz-induced Hartree-Fock value ,
where is the scalar coupling, and then increases with in a
well-determined manner.Comment: 9 pages, 5 figures. In press Int. J. Mod. Phys. E (2012
Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014:Evidence of policy success in improving air quality
Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of ‘clean Atlantic background’ air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50ppb per year) in the 1997–2003 period but continues post 2003. A ‘local CO increment’ can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and ‘bottom-up’ inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK
Origin of atomic clusters during ion sputtering
Previous studies have shown that the size distributions of small clusters ( n<=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n>=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface
- …