90 research outputs found

    Photometric Variability and Astrometric Stability of the Radio Continuum Nucleus in the Seyfert Galaxy NGC 5548

    Get PDF
    The NRAO VLA and VLBA were used from 1988 November to 1998 June to monitor the radio continuum counterpart to the optical broad line region (BLR) in the Seyfert galaxy NGC 5548. Photometric and astrometric observations were obtained at 21 epochs. The radio nucleus appeared resolved, so comparisons were limited to observations spanning 10-60 days and 3-4 yr, and acquired at matched resolutions of 1210 mas = 640 pc (9 VLA observations), 500 mas = 260 pc (9 VLA observations), or 2.3 mas = 1.2 pc (3 VLBA observations). The nucleus is photometrically variable at 8.4 GHz by 33±533\pm5% and 52±552\pm5% between VLA observations separated by 41 days and 4.1 yr, respectively. The 41-day changes are milder (19±519\pm5%) at 4.9 GHz and exhibit an inverted spectrum (α∌+0.3±0.1\alpha \sim +0.3\pm0.1, S∝Μ+αS\propto \nu ^{+\alpha}) from 4.9 to 8.4 GHz. The nucleus is astrometrically stable at 8.4 GHz, to an accuracy of 28 mas = 15 pc between VLA observations separated by 4.1 yr and to an accuracy of 1.8 mas = 0.95 pc between VLBA observations separated by 3.1 yr. Such photometric variability and astrometric stability is consistent with a black hole being the ultimate energy source for the BLR, but is problematic for star cluster models that treat the BLR as a compact supernova remnant and, for NGC 5548, require a new supernova event every 1.7 yr within an effective radius re=r_e = 42 mas = 22 pc. A deep image at 8.4 GHz with resolution 660 mas = 350 pc was obtained by adding data from quiescent VLA observations. This image shows faint bipolar lobes straddling the radio nucleus and spanning 12 arcsec = 6.4 kpc. These synchrotron-emitting lobes could be driven by twin jets or a bipolar wind from the Seyfert 1 nucleus.Comment: with 9 figures, to appear in the Astrophysical Journal, 2000 March 10, volume 53

    SN 1986J VLBI. The Evolution and Deceleration of the Complex Source and a Search for a Pulsar Nebula

    Get PDF
    We report on VLBI observations of supernova 1986J in the spiral galaxy NGC 891 at two new epochs, 1990 July and 1999 February, t=7.4 and 15.9 yr after the explosion, and on a comprehensive analysis of these and earlier observations from t~4 yr after the explosion date, which we estimate to be 1983.2 +/- 1.1. The source is a shell or composite, and continues to show a complex morphology with large brightness modulations along the ridge and with protrusions. The supernova is moderately to strongly decelerated. The average outer radius expands as t^(0.71 +/- 0.11), and the expansion velocity has slowed to 6000 km/s at t=15.9 yr from an extrapolated 20,000 km/s at t=0.25 yr. The structure changes significantly with time, showing that the evolution is not self-similar. The shell structure is best visible at the latest epoch, when the protrusions have diminished somewhat in prominence and a new, compact component has appeared. The radio spectrum shows a clear inversion above 10 GHz. This might be related to a pulsar nebula becoming visible through the debris of the explosion. The radio flux density between 1.5 and 23 GHz decreases strongly with time, with the flux density proportional to t^(-2.94 +/- 0.24) between t~15 to 19 yr. This decrease is much more rapid than that found in earlier measurements up to t~6 yr.Comment: 24 pages, 9 Figures, LaTeX Accepted for Publication in the Astrophysical Journa

    Broad Line Emission in Low-Metallicity Blue Compact Dwarf Galaxies: Evidence for Stellar Wind, Supernova and Possible AGN Activity

    Full text link
    We present spectra of a large sample of low-metallicity blue compact dwarf galaxies which exhibit broad components in their strong emission lines, mainly in Hbeta, [O III]4959, 5007 and Halpha. Twenty-three spectra have been obtained with the MMT, 14 of which show broad emission. The remaining 21 spectra with broad emission have been selected from the Data Release 5 of the Sloan Digital Sky Survey. The most plausible origin of broad line emission is the evolution of massive stars and their interaction with the circumstellar and interstellar medium. The broad emission with the lowest Hα\alpha luminosities (10^36 - 10^39 erg/s) is likely produced in circumstellar envelopes around hot Ofp/WN9 and/or LBV stars. The broad emission with the highest Halpha luminosities (10^40 - 10^42 erg/s) probably arises from type IIp or type IIn supernovae (SNe). It can also come from active galactic nuclei (AGN) containing intermediate-mass black holes, although we find no strong evidence for hard non-thermal radiation in our sample galaxies. The oxygen abundance in the host galaxies with SN candidates is low and varies in the range 12 + log O/H = 7.36 - 8.31. However, type IIn SN / AGN candidates are found only in galaxies with 12 + log O/H < 7.99. Spectroscopic monitoring of these type IIn SN / AGN candidates over a time scale of several years is necessary to distinguish between the two possibilities.Comment: 50 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Late-Time Optical and UV Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8 yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad 5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II] 7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A, [S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1} indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa

    Optical and infrared observations of the supernova SN 1999el

    Get PDF
    Optical and near-infrared light curves of the Type IIn supernova 1999el in NGC 6951 are presented. A period of 220 days (416 days in the near-infrared) is covered from the first observation obtained a few days before maximum light. Spectroscopic observations are also discussed. Using as a distance calibrator the Type Ia SN 2000E, which occurred some months later in the same galaxy, and fitting a blackbody law to the photometric data we obtain a maximum bolometric luminosity for SN 1999el of ∌1044\sim 10^{44} erg s−1^{-1}. In general, the photometric properties of SN 1999el are very similar to those of SN 1998S, a bright and well studied Type IIn SN, showing a fast decline in all observed bands similar to those of Type II-L SNe. The differences with SN 1998S are analyzed and ascribed to the differences in a pre-existing circumstellar envelope in which dust was already present at the moment of the SN outburst. We infer that light echoes may play a possibly significant role in affecting the observed properties of the light curves, although improved theoretical models are needed to account for the data. We conclude that mass loss in the progenitor RG stars is episodic and occurs in an asymmetric way. This implies that collapsing massive stars appear as normal Type II SN if this occurs far from major mass loss episodes, whereas they appear as Type IIn SNe if a large mass loss episode is in progress.Comment: 30 pages, 8 figures, figure 1 available as jpeg file, ApJ in pres

    The Dual-Axis Circumstellar Environment of the Type IIn Supernova 1997eg

    Get PDF
    We present multi-epoch spectral and spectropolarimetric observations of the Type IIn supernova (SN) 1997eg that indicate the presence of a flattened disk-like concentration of circumstellar material surrounding nonspherical ejecta, with which the disk is misaligned. The polarization across the broad H alpha, H beta, and He I 5876 lines of SN 1997eg forms closed loops when viewed in the Stokes q-u plane. Such loops occur when the geometrical symmetry of one or both of the Stokes parameters across spectral lines is broken, in this case most likely by occultation of the ejecta by the equatorial circumstellar matter concentration. The polarization of the narrow Balmer lines possesses an intrinsic axis that differs by 12 degrees from that of the elongated ejecta and probably indicates the orientation of the disk-like circumstellar material. The existence of two different axes of symmetry in SN 1997eg suggests that neither rotation of the progenitor nor the influence of a companion star can be the sole mechanism creating a preferred axis within the supernova system. Our model supports the emerging hypothesis that the progenitors of some Type IIn supernovae are luminous blue variable stars, whose pre-supernova mass eruptions form the circumstellar shells that physically characterize the SN IIn subclass. These conclusions, which are independent of interstellar polarization effects, would have been unobservable with only a single epoch of spectropolarimetry.Comment: 52 pages, 13 figures; accepted by ApJ. Several sections revised in response to referee comments. High-resolution figures are available at http://grammai.org/jhoffman/1997eg

    The type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope

    Full text link
    We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absorption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; and (iii) broad, smooth wings, most apparent in H-alpha. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the supernova is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. We model the supernova deceleration and Thomson scattering wings to recover the density, radial extent and Thomson optical depth of the CS envelope during the first month. We reproduce the light curve with a hydrodynamical model and find it to be powered by a combination of internal energy leakage after the explosion of an extended pre-supernova (~10^15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope: it is close to homologous expansion with outer velocity ~1100 km/s and a kinematic age of ~1.5 yr. The CS envelope's high mass and kinetic energy, combined with its small age, strongly suggest that the CS envelope was explosively ejected about 1.5 yr before the supernova explosion.Comment: 22 pages, 21 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova

    Get PDF
    An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages plus 3 pages of online materia

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003

    Photometric and Spectroscopic Observations of SN 1990E in NGC 1035: Observational Constraints for Models of Type II Supernovae

    Full text link
    We present 126 photometric and 30 spectral observation of SN 1990E spanning from 12 days before B maximum to 600 days past discovery. These observations show that SN 1990E was of type II-P, displaying hydrogen in its spectrum, and the characteristic plateau in its light curve. SN 1990E is one of the few SNe II which has been well observed before maximum light, and we present evidence that this SN was discovered very soon after its explosion. In the earliest spectra we identify, for the first time, several N II lines. We present a new technique for measuring extinction to SNe II based on the evolution of absorption lines, and use this method to estimate the extinction to SN 1990E, Av=1.5+/-0.3 mag. From our photometric data we have constructed a bolometric light curve for SN 1990E and show that, even at the earliest times, the bolometric luminosity was falling rapidly. We use the late-time bolometric light curve to show that SN 1990E trapped a majority of the gamma rays produced by the radioactive decay of 56Co, and estimate that SN 1990E ejected 0.073 Mo of 56Ni, an amount virtually identical to that of SN 1987A. [excerpt
    • 

    corecore