35 research outputs found

    Assessing motor deficits in compressive neuropathy using quantitative electromyography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studying the changes that occur in motor unit potential trains (MUPTs) may provide insight into the extent of motor unit loss and neural re-organization resulting from nerve compression injury. The purpose of this study was to determine the feasibility of using decomposition-based quantitative electromyography (DQEMG) to study the pathophysiological changes associated with compression neuropathy.</p> <p>Methods</p> <p>The model used to examine compression neuropathy was carpal tunnel syndrome (CTS) due to its high prevalence and ease of diagnosis. Surface and concentric needle electromyography data were acquired simultaneously from the abductor pollicis brevis muscle in six individuals with severe CTS, eight individuals with mild CTS and nine healthy control subjects. DQEMG was used to detect intramuscular MUPTs during constant-intensity contractions and to estimate parameters associated with the surface- and needle-detected motor unit potentials (SMUPs and MUPs, respectively). MUP morphology and stability, SMUP morphology and motor unit number estimates (MUNEs) were compared among the groups using Kruskal-Wallis tests.</p> <p>Results</p> <p>The severe CTS group had larger amplitude and longer duration MUPs and smaller MUNEs than the mild CTS and control groups, suggesting that the individuals with severe CTS had motor unit loss with subsequent collateral reinnervation, and that DQEMG using a constant-intensity protocol was sensitive to these changes. SMUP morphology and MUP complexity and stability did not significantly differ among the groups.</p> <p>Conclusions</p> <p>These results provide evidence that MUP amplitude parameters and MUNEs obtained using DQEMG, may be a valuable tool to investigate pathophysiological changes in muscles affected by compressive motor neuropathy to augment information obtained from nerve conduction studies. Although there were trends in many of these measures, in this study, MUP complexity and stability and SMUP parameters were, of limited value.</p

    Near-Fiber Electromyography

    Get PDF
    ObjectiveDescribe and evaluate the concepts of near fiber electromyography (NFEMG), the features used, including near fiber motor unit potential (NFMUP) duration and dispersion, which relate to motor unit distal axonal branch and muscle fiber conduction time dispersion, and NFMUP segment jitter, a new measure of the temporal variability of neuromuscular junction transmission (NMJ), and axonal branch and muscle fibre conduction for the near fibres (i.e. NF jitter), and the methods for obtaining their values.MethodsTrains of high-pass filtered motor unit potentials (MUPs) (i.e. NFMUP trains) were extracted from needle-detected EMG signals to assess changes in motor unit (MU) morphology and electrophysiology caused by neuromuscular disorders or ageing. Evaluations using simulated needle-detected EMG data were completed and example human data are presented.ResultsNFEMG feature values can be used to detect axonal sprouting, conduction slowing and NMJ transmission delay as well as changes in MU fiber diameter variability, and NF jitter. These changes can be detected prior to alterations of MU size or numbers.ConclusionsThe evaluations clearly demonstrate and the example data support that NFMUP duration and dispersion reflect MU distal axonal branching, conduction slowing and NMJ transmission delay and/or MU fiber diameter variability and that NFMUP jiggle and segment jitter reflect NF jitter

    Effects of Aging on Genioglossus Motor Units in Humans

    Get PDF
    The genioglossus is a major upper airway dilator muscle thought to be important in obstructive sleep apnea pathogenesis. Aging is a risk factor for obstructive sleep apnea although the mechanisms are unclear and the effects of aging on motor unit remodeled in the genioglossus remains unknown. To assess possible changes associated with aging we compared quantitative parameters related to motor unit potential morphology derived from EMG signals in a sample of older (n = 11; >55 years) versus younger (n = 29; <55 years) adults. All data were recorded during quiet breathing with the subjects awake. Diagnostic sleep studies (Apnea Hypopnea Index) confirmed the presence or absence of obstructive sleep apnea. Genioglossus EMG signals were analyzed offline by automated software (DQEMG), which estimated a MUP template from each extracted motor unit potential train (MUPT) for both the selective concentric needle and concentric needle macro (CNMACRO) recorded EMG signals. 2074 MUPTs from 40 subjects (meanÂą95% CI; older AHI 19.6Âą9.9 events/hr versus younger AHI 30.1Âą6.1 events/hr) were extracted. MUPs detected in older adults were 32% longer in duration (14.7Âą0.5 ms versus 11.1Âą0.2 ms; P = 0.05), with similar amplitudes (395.2Âą25.1 ÂľV versus 394.6Âą13.7 ÂľV). Amplitudes of CNMACRO MUPs detected in older adults were larger by 22% (62.7Âą6.5 ÂľV versus 51.3Âą3.0 ÂľV; P<0.05), with areas 24% larger (160.6Âą18.6 ÂľV.ms versus 130.0Âą7.4 ÂľV.ms; P<0.05) than those detected in younger adults. These results confirm that remodeled motor units are present in the genioglossus muscle of individuals above 55 years, which may have implications for OSA pathogenesis and aging related upper airway collapsibility

    Frailty phenotype and frailty index are associated with distinct neuromuscular electrophysiological characteristics in men

    Get PDF
    The purpose of this study was to determine whether neuromuscular electrophysiological characteristics that are known to underlie sarcopenia are also associated with the more complex frailty syndrome. Eighty‐six men [mean (SD) age, 74 (8) years] were classed as non‐frail (robust), prefrail or frail using criteria from the frailty phenotype (FP) and the frailty index (FI). The femoral nerve was stimulated maximally and the resulting compound muscle action potential amplitude (CMAP) measured over the vastus lateralis. Motor unit potential (MUP) size was assessed during voluntary contractions using intramuscular electromyography (iEMG). Logistic and negative binomial regression models determined relationships between FP and FI with CMAP and MUP sizes before and after adjustments for age and body mass index. Larger CMAP size was associated with a lower likelihood of frailty in fully adjusted models: a 1SD higher level in vastus lateralis CMAP size was associated with a 0.4 (95% confidence interval: 0.2, 0.6; P < 0.01) unit lower FI (40% of the FI range) and more than halving of the odds [odds ratio: 0.43 (95% confidence interval: 0.21, 0.90)] of having a frail/prefrail phenotype. Greater MUP size was also related to lower FI values using unadjusted and fully adjusted models. However, MUP size was not significantly related to FP in any model. Smaller MUPs and a smaller CMAP were significantly associated with a higher likelihood of frailty, independent of age and body mass index. These results relate neuromuscular electrophysiological characteristics to the complex frailty syndrome and identify motor unit remodelling as a possible contributing factor

    Motor unit dysregulation following 15 days of unilateral lower limb immobilisation

    Get PDF
    Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans. Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11 to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8 to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. Abstract figure legend Ten healthy young males underwent 15 days of unilateral lower limb immobilisation with an irremovable leg brace. Muscle size, strength and neuromuscular characteristics were measured bilaterally. Muscle strength reduced to a greater extent than muscle size in the immobilised leg while remaining unaltered in the non-immobilised leg. Motor unit firing rate, measured bilaterally using intramuscular electromyography, was also reduced in the immobilised leg only. This occurred at contraction intensities both relative to follow-up muscle strength and muscle strength normalised to pre-immobilisation. These findings suggest that neural dysregulation contributes to the loss of muscle strength observed in situations of disuse atrophy in humans

    Acute adaptation of central and peripheral motor unit features to exercise‐induced fatigue differs with concentric and eccentric loading

    Get PDF
    New Findings: What is the central question of this study? Conflicting evidence exists on motor unit (MU) firing rate in response to exercise‐induced fatigue, possibly due to the contraction modality used: Do MU properties adapt similarly following concentric and eccentric loading? What is the main finding and its importance? MU firing rate increased following eccentric loading only despite a decline in absolute force. Force steadiness deteriorated following both loading methods. Central and peripheral MU features are altered in a contraction type‐dependant manner, which is an important consideration for training interventions. Abstract: Force output of muscle is partly mediated by the adjustment of motor unit (MU) firing rate (FR). Disparities in MU features in response to fatigue may be influenced by contraction type, as concentric (CON) and eccentric (ECC) contractions demand variable amounts of neural input, which alters the response to fatigue. This study aimed to determine the effects of fatigue following CON and ECC loading on MU features of the vastus lateralis (VL). High‐density surface (HD‐sEMG) and intramuscular (iEMG) electromyography were used to record MU potentials (MUPs) from bilateral VLs of 12 young volunteers (six females) during sustained isometric contractions at 25% and 40% of the maximum voluntary contraction (MVC), before and after completing CON and ECC weighted stepping exercise. Multi‐level mixed effects linear regression models were performed with significance assumed as P 0.1) but neuromuscular junction transmission instability increased in both legs (P < 0.04), and markers of fibre membrane excitability increased following CON only (P = 0.018). These data demonstrate that central and peripheral MU features are altered following exercise‐induced fatigue and differ according to exercise modality. This is important when considering interventional strategies targeting MU function

    Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.</p> <p>Methods</p> <p>Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.</p> <p>Results</p> <p>Significant group differences were found for all MUP variables and for MU firing rate (<it>p</it> < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (<it>p </it>< 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (<it>p </it>< 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (<it>p </it>< 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (<it>p </it>< 0.006).</p> <p>Conclusion</p> <p>The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.</p
    corecore