389 research outputs found

    Large granular lymphocyte leukemia (LGL) in a child with hyper IgM syndrome and autoimmune hemolytic anemia

    Full text link
    We describe a female with a history of autosomal recessive hyper-IgM (HIGM) syndrome along with a history of autoimmune hemolytic anemia and intermittent lymphadenopathy. She subsequently developed neutropenia, lymphocyostosis and mild thrombocytopenia. Flow cytometry of the peripheral blood revealed the presence of a marked predominance of cytotoxic T lymphocytes, shown to be clonal, with concomitant natural killer (NK) antigen expression. She responded to weekly methotrexate therapy. Pediatr Blood Cancer 2008;50:142–145. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57398/1/20902_ftp.pd

    Leukocytic promotion of prostate cellular proliferation

    Full text link
    BACKGROUND Histological evidence of pervasive inflammatory infiltrate has been noted in both benign prostatic hyperplasia/hypertrophy (BPH) and prostate cancer (PCa). Cytokines known to attract particular leukocyte subsets are secreted from prostatic stroma consequent to aging and also from malignant prostate epithelium. Therefore, we hypothesized that leukocytes associated with either acute or chronic inflammation attracted to the prostate consequent to aging or tumorigenesis may promote the abnormal cellular proliferation associated with BPH and PCa. METHODS An in vitro system designed to mimic the human prostatic microenvironment incorporating prostatic stroma (primary and immortalized prostate stromal fibroblasts), epithelium (N15C6, BPH-1, LNCaP, and PC3 cells), and inflammatory infiltrate (HL-60 cells, HH, and Molt-3 T-lymphocytes) was developed. Modified Boyden chamber assays were used to test the ability of prostate stromal and epithelial cells to attract leukocytes and to test the effect of leukocytes on prostate cellular proliferation. Antibody arrays were used to identify leukocyte-secreted cytokines mediating prostate cellular proliferation. RESULTS Leukocytic cells migrated towards both prostate stromal and epithelial cells. CD4+ T-lymphocytes promoted the proliferation of both transformed and non-transformed prostate epithelial cell lines tested, whereas CD8+ T-lymphocytes as well as dHL-60M macrophagic and dHL-60N neutrophilic cells selectively promoted the proliferation of PCa cells. CONCLUSIONS The results of these studies show that inflammatory cells can be attracted to the prostate tissue microenvironment and can selectively promote the proliferation of non-transformed or transformed prostate epithelial cells, and are consistent with differential role(s) for inflammatory infiltrate in the etiologies of benign and malignant proliferative disease in the prostate. Prostate 70: 377–389, 2010. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65026/1/21071_ftp.pd

    Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow

    Get PDF
    Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (–3 N peak load or 400 µɛ surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. © 2011 American Society for Bone and Mineral Research

    Clinical course and prognosis of the lymphoproliferative disease of granular lymphocytes. A multicenter study.

    Get PDF
    Lymphoproliferative disease of granular lymphocytes (LDGL) is a recently recognized, relatively rare atypical lymphocytosis characterized by the presence of over 2000 lymphocytes with cytoplasmic azurophilic granules/mm3 in the peripheral blood. The clinical course is heterogeneous, varying from spontaneous regression to progressive, malignant disease. As a consequence, clinical intervention is not standardized. In a worldwide multicenter study, the authors observed 151 patients with LDGL for a mean follow-up time of 29 months. Forty-three patients were asymptomatic at the time of diagnosis. In the remaining cases, clinical symptoms included fever (41 cases), infections (58), neutropenia (47), anemia (17), and thrombocytopenia (12). In 69 cases, LDGL coexisted with an associated disease. Most patients had a nonprogressive clinical course despite the presence of severe symptoms. In 19 patients, death related to LDGL occurred within 48 months. The authors investigated which features at diagnosis were significantly associated with increased mortality. In the univariate analysis, lymph node and liver enlargement, fever at presentation, skin infiltration, a low (less than or equal to 5000/mm3) or high (greater than 20,000/mm3) peripheral leukocyte count, relatively low (less than or equal to 3000) or high (greater than 7000/mm3) absolute peripheral granular lymphocyte (GL) count, and a low (less than or equal to 15%) percentage of HNK-1-positive cells were found to be predictors of increased mortality. In the multivariate analysis, significant independent predictors were fever at diagnosis, a low (less than or equal to 15%) percentage of HNK-1-positive peripheral blood mononuclear cells (PBMC) and a relatively low (less than or equal to 3000) GL count. These results showed that about 25% of the patients with LDGL were diagnosed after a routine blood count and had no clinical symptoms. The remaining patients were symptomatic, with some experiencing a fatal clinical course. The author's analysis of the significant prognostic features of LDGL may help in understanding the heterogeneous nature of this syndrom

    The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia

    Get PDF
    BACKGROUND: Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. METHODS: Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. RESULTS: Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) CONCLUSIONS: This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress

    D-Penicillamine Metabolism in an In-Vivo Model of Inflamed Synovium

    Get PDF
    Oxidation to disulphides is the chief metabolic transformation of D-penicillamine (D-pen) in patients with rheumatoid arthritis. Oxidation also occurs in many biological fluids in-vitro. Reduction of oxygen species may accompany the oxidation of D-pen under appropriate conditions and may mediate the anti-rheumatic action of D-pen. The transformation of D-pen therefore was examined in an in-vivo model of inflamed synovium. Subcutaneous air-pouches of groups of rats were treated with saline, 10% serum or 10% zymosan activated serum (ZAS). The transformation of D-pen to low molecular weight (LMW) metabolites and protein conjugates within the pouch was then assessed. The concentrations of total protein were significantly higher in the serum and ZAS-treated groups than in the saline-treated group and the inflammatory cell counts were significantly higher in the ZAS-treated group than in either of the other groups, as expected. D-pen oxidised rapidly to LMW metabolites and smaller amounts of D-pen-protein conjugate (D-pen-protein) in the air pouches of all animals. The rates of oxidation to LMW metabolites were greater in the ZAS-treated animals than the saline-treated group (p less than 0.005). The concentrations of D-pen-protein conjugate were also greater for the serum-treated and ZAS-treated animals than for the saline controls (p less than 0.005 in each case) at all times. Oxidation of D-pen therefore occurs at this site of inflammation and is influenced by local conditions. This may be important to understanding the forms in which D-pen exists in inflamed synovial joints and the way it may exert its antirheumatic activity

    Controlling Long-Range Ordered Self-assembly of Solid-Binding Peptide Monolayers on Atomically Flat Layered Materials

    No full text
    Thesis (Master's)--University of Washington, 2016-06Solid-binding short peptides offer great promise as molecular building blocks in nanotechnology and nanomedicine. Some of these peptides can form self-organized nanostructures on solid surfaces due to highly specific coordination of inter-molecular forces enabled by conformational changes in the peptide. This study aims to examine how the organization of self-assembled monolayers formed by a phage display selected “wild-type” graphite binding peptide (GrBP5-WT) change with solution conditions, such as pH and ionic strength. The surface coverage and crystallinity of these peptide monolayers were shown to increase when incubated in 1mM sodium phosphate. In contrast, GrBP5-WT incubated in 1mM sodium hydroxide showed significantly decreased coverage, and no long-range-ordered structures. Zeta potential measurements of aqueous graphite powder dispersions showed a pH-dependent negative surface charge, which increased in magnitude when GrBP5-WT was added. A peptide mutant (GrBP5-M9) was designed by replacing two carboxylate residues with polar, but non-charged, amide residues. The mutant peptide formed crystalline nanostructures on graphite, which were unaffected by changes to the ionic strength or pH, and did not contribute additional negative charge to the graphite dispersion zeta potential. This showed that a simple mutation to a phage-display selected solid-binding peptide can eliminate its sensitivity to buffer and pH changes, facilitating the formation of more predictable bio/nano interfaces towards the development more robust biosensors and bioreactors. Self-assembly of GrBP5-WT and two other mutants (M6 and M8) was also shown on a variety of different atomically-flat 2D solid substrates, including CVD graphene on copper, and exfoliated BN, MoS2, MoSe2, WS2, and WSe2 on SiO2/Si. Although long-range ordered structures were shown on each substrate material, subtle differences in the patterns formed on each substrate indicate an important influence of the underlying crystal structure on the peptide nanostructure. The ready formation of ordered nanostructures opens the door for an investigation of the physical properties of number of hybrid nanomaterials. In particular, solid-binding peptides were shown to induce a molecular doping effect on the photoluminescence of single-layer MoSe2 (a 2D semiconductor with a direct band-gap in the visible light spectrum). Peptide self-assembly was also found to be sensitive to the presence of polymer residues commonly used in lithographic processing (such as PMMA). Indium microsoldering was investigated as a means to prepare electronic devices (such as graphene field-effect transistors) without contaminating the substrate
    corecore