50 research outputs found

    Ecology impacts the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban humans

    Get PDF
    Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases

    S-Glutathionylation at Cys328 and Cys542 Impairs STAT3 Phosphorylation.

    Get PDF
    STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a reversible redox modification of cysteine residues. This suggests the possible cross-talk between phosphorylation and glutathionylation and points out that STAT3 is susceptible to redox regulation. Recently, we reported that decreasing the GSH content in different cell lines induces inhibition of STAT3 activity through the reversible oxidation of thiol groups. In the present work, we demonstrate that GSH/diamide treatment induces S-glutathionylation of STAT3 in the recombinant purified form. This effect was completely reversed by treatment with the reducing agent dithiothreitol, indicating that S-glutathionylation of STAT3 was related to formation of protein-mixed disulfides. Moreover, addition of the bulky negatively charged GSH moiety impairs JAK2-mediated STAT3 phosphorylation, very likely interfering with tyrosine accessibility and thus affecting protein structure and function. Mass mapping analysis identifies two glutathionylated cysteine residues, Cys328 and Cys542, within the DNA-binding domain and the linker domain, respectively. Site direct mutagenesis and in vitro kinase assay confirm the importance of both cysteine residues in the complex redox regulatory mechanism of STAT3. Cells expressing mutant were resistant in this regard. The data presented herein confirmed the occurrence of a redox-dependent regulation of STAT3, identified the more redox-sensitive cysteines within STAT3 structure, and may have important implications for development of new drugs

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The Arabidopsis central vacuole as an expression system for intracellular transporters: Functional characterization of the Cl-/H+ exchanger CLC-7

    No full text
    Functional characterization of intracellular transporters is hampered by the inaccessibility of animal endomembranes to standard electrophysiological techniques. Here, we used Arabidopsis mesophyll protoplasts as a novel heterologous expression system for the lysosomal chloride–proton exchanger CLC-7 from rat. Following transient expression of a rCLC-7:EGFP construct in isolated protoplasts, the fusion protein efficiently targeted to the membrane of the large central vacuole, the lytic compartment of plant cells. Membrane currents recorded from EGFP-positive vacuoles were almost voltage independent and showed time-dependent activation at elevated positive membrane potentials as a hallmark. The shift in the reversal potential of the current induced by a decrease of cytosolic pH was compatible with a 2Cl(−)/1H(+) exchange stoichiometry. Mutating the so-called gating glutamate into alanine (E245A) uncoupled chloride fluxes from the movement of protons, transforming the transporter into a chloride channel-like protein. Importantly, CLC-7 transport activity in the vacuolar expression system was recorded in the absence of the auxiliary subunit Ostm1, differently to recent data obtained in Xenopus oocytes using a CLC-7 mutant with partial plasma membrane expression. We also show that plasma membrane-targeted CLC-7(E245A) is non-functional in Xenopus oocytes when expressed without Ostm1. In summary, our data suggest the existence of an alternative CLC-7 operating mode, which is active when the protein is not in complex with Ostm1. The vacuolar expression system has the potential to become a valuable tool for functional studies on intracellular ion channels and transporters from animal cells
    corecore