88 research outputs found
Determinants of habitat use and community structure of rodents in northern shortgrass steppe
1996 Spring.Includes bibliographical references.Patterns of distribution and abundance of small mammals reflect the responses of individuals to the spatial and temporal availability of resources and abiotic conditions, as well as interactions with conspecifics and other species. I examined habitat selection of two rodents, the deer mouse (Peromyscus maniculatus) and the northern grasshopper mouse (Onychomys leucogaster), on shortgrass steppe in north-central Colorado. Both species consume arthropods when these resources are plentiful, but grasshopper mice prey on other rodents and thus may have both competitive and predatory effects on deer mice. To examine these interactions, I conducted a removal experiment to determine the effect of grasshopper mice on microhabitat use, diet, and abundance of deer mice, and an odor-response experiment to determine whether olfactory cues mediate interactions between these species. Deer mice preferred shrubs at both individual and population levels, presumably to reduce predation risk. Mice oriented movements toward shrubs and traveled under shrubs more often than expected based on the density of shrubs on study plots. Population density also increased with increasing shrub density and aggregation. The response of mice to shrub cover was non-linear. Thresholds in the selective use of shrubs, movement patterns, and abundance occurred over a narrow range of shrub cover where shrubs were most aggregated, underscoring the importance of both shrub density and dispersion. Mice tended to accumulate in areas where their movements were most tortuous, suggesting that it is possible to generate testable predictions about patterns of abundance from individual movements. In contrast, grasshopper mice showed no affinity for shrub microhabitats, and instead oriented movements towards rodent burrows and disturbances created by pocket gophers (Thomomys talpoides). Results from pitfall trapping in different microhabitat types suggested that grasshopper mice used gopher mounds and burrows because of the concentration of insect prey in these microhabitats. The abundance of these microhabitats also was a better predictor of grasshopper-mouse abundance than were broad-scale, qualitative descriptors of macrohabitat type. The significance of these microhabitats across scales demonstrates the importance of spatial and temporal availability of prey to grasshopper mice. Even though grasshopper mice and deer mice show different habitat affinities, grasshopper mice may affect the surface activity and abundance of deer mice in areas where they co-occur. Deer mice decreased in number throughout the removal experiment on both control and removal sites, but the decline was greatest on controls, where grasshopper-mouse numbers increased. No shifts in microhabitat use were detected on removal sites, but deer mice increased their use of shrubs on control sites when grasshopper mice were most abundant. Because diets of deer mice did not differ between control and removal sites during the experiment, grasshopper mice apparently influenced the behavior and populations of deer mice through predation or interference rather than resource competition. Increases in the abundance of granivorous rodents on removal sites support this conclusion, and suggest that grasshopper mice, when abundant, can impact the composition of local assemblages on shortgrass steppe. However, if deer mice actively avoid contact with grasshopper mice, it is unlikely that this interaction is mediated by olfactory cues. When presented with odors of grasshopper mice, harvest mice, and clean cotton, deer mice showed no avoidance of grasshopper-mouse odors, regardless of season, sex or reproductive condition of respondents, or history of contact with grasshopper mice
Plague outbreaks in prairie-dog colonies associated with El Niño climatic events
The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Plague (Yersinia pestis) was introduced to the western U.S. in the mid-20th century and is a significant threat to the persistence of black-tailed prairie dog (Cynomys ludovicianus) populations. The social, colonial habits of prairie dogs make them particularly susceptible to plague, and many flea species, including known carriers of plague, are associated with prairie dogs or their extensive burrow systems. Mortality during plague epizootics, or outbreaks, is nearly 100% (Cully and Williams 2001; J. Mammal. 82:894), resulting in the extinction of entire colonies. In northern Colorado, prairie dogs exist in metapopulations (Roach et al. 2001, J. Mammal. 82:946), in which colonies naturally isolated by topography, soils and vegetation are connected by dispersal. Dispersal of either infected prairie dogs or plague-resistant reservoir species is hypothesized to spread plague among colonies. Plague outbreaks therefore may disrupt the dynamics of prairie-dog metapopulations and affect regional persistence. In the context of a century of past eradication efforts that have drastically reduced prairie-dog numbers, and increasing agricultural and urban development, plague represents a relatively new and unique threat to prairie dogs and the species that are closely associated with them. Poster presented at the 6th SGS Symposium held on 1/10/03
Do Trap-Neuter-Return (TNR) Practices Contribute to Human–Coyote Conflicts in Southern California?
One possible contributor to the unusually high number of conflicts between coyotes (Canis latrans) and people in urban southern California, USA, may be the abundance of free-roaming domestic cats (Felis catus; cats) subsidized by feeding and augmented by trap-neuter-return (TNR) programs. To determine if coyotes regularly prey on and consume cats, we combined visual and molecular-genetic approaches to identify prey items in stomachs of 311 coyotes from Los Angeles County and Orange County, provided to the South Coast Research and Extension Center, in Irvine, California, between June 2015 and December 2018. We detected cat remains in 35% of the stomachs of 245 coyotes with identifiable meals, making cats the most common mammalian prey item consumed and more common than reported previously. Using a geographic information systems approach, we then compared landscape characteristics associated with locations of coyotes that ate cats to public shelter records for TNR cat colonies. Cat-eating coyotes were associated with areas that were more intensively developed, had little natural or altered open space, and had higher building densities than coyotes that did not eat cats. Locations of TNR colonies had similar landscape characteristics. Coyotes associated with TNR colonies, and those that were euthanized (vs. road-killed), were also more likely to have consumed cats. The high frequency of cat remains in coyote diets and landscape characteristics associated with TNR colonies and cat-eating coyotes support the argument that high cat densities and associated supplemental feeding attracted coyotes. Effective mitigation of human–coyote conflicts may require prohibitions on outdoor feeding of free-roaming cats and wildlife and the elimination of TNR colonies
Quantum Robots and Environments
Quantum robots and their interactions with environments of quantum systems
are described and their study justified. A quantum robot is a mobile quantum
system that includes a quantum computer and needed ancillary systems on board.
Quantum robots carry out tasks whose goals include specified changes in the
state of the environment or carrying out measurements on the environment. Each
task is a sequence of alternating computation and action phases. Computation
phase activities include determination of the action to be carried out in the
next phase and possible recording of information on neighborhood environmental
system states. Action phase activities include motion of the quantum robot and
changes of neighborhood environment system states. Models of quantum robots and
their interactions with environments are described using discrete space and
time. To each task is associated a unitary step operator T that gives the
single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and
computation phase step operators. Conditions that T_{a} and T_{c} should
satisfy are given along with a description of the evolution as a sum over paths
of completed phase input and output states. A simple example of a task carrying
out a measurement on a very simple environment is analyzed. A decision tree for
the task is presented and discussed in terms of sums over phase paths. One sees
that no definite times or durations are associated with the phase steps in the
tree and that the tree describes the successive phase steps in each path in the
sum.Comment: 30 Latex pages, 3 Postscript figures, Minor mathematical corrections,
accepted for publication, Phys Rev
Long-term ecological research on Colorado Shortgrass Steppe
The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012
The association between lithium use and neurocognitive performance in patients with bipolar disorder
Lithium remains the gold standard for the treatment of bipolar disorder (BD); however, its use has declined over the years mainly due to the side effects and the subjective experience of cognitive numbness reported by patients. In the present study, we aim to methodically test the effects of lithium on neurocognitive functioning in the largest single cohort (n = 262) of BD patients reported to date by harnessing the power of a multi-site, ongoing clinical trial of lithium monotherapy. At the cross-sectional level, multivariate analysis of covariance (MANCOVA) was conducted to examine potential group differences across neurocognitive tests [California Verbal Learning Test (CVLT trials 1–5,CVLT delayed recall), Wechsler Digit Symbol, Trail-making Test parts A and B (TMT-A; TMT-B), and a global cognition index]. At the longitudinal level, on a subset of patients (n = 88) who achieved mood stabilization with lithium monotherapy, we explored the effect of lithium treatment across time on neurocognitive functioning. There were no differences at baseline between BD patients that were taking lithium compared with those that were not. At follow-up a significant neurocognitive improvement in the global cognitive index score [F = 31.69; p < 0.001], CVLT trials 1–5 [F = 29.81; p < 0.001], CVLT delayed recall [F = 15.27; p < 0.001], and TMT-B [F = 6.64, p = 0.012] was detected. The cross-sectional and longitudinal (on a subset of 88 patients) investigations suggest that lithium may be beneficial to neurocognitive functioning in patients with BD and that at the very least it does not seem to significantly impair cognition when used therapeutically.acceptedVersio
Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E–09 and 4.10E–18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.publishedVersio
Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
Bot Fly Infestation of Thirteen-Lined Ground Squirrels in Colorado Shortgrass Steppe
We studied prevalence of bot fly infestation of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) trapped during 13 years of population monitoring in shrub and grassland habitats in northern Colorado. We also investigated effects of prescribed burning, a common habitat management practice in grasslands, on bot fly prevalence. Infested squirrels were rarely located on shrub sites and during spring (May–Jun) trapping. Across all summers, mean prevalence in grasslands was 7.9% (range: 2.1–23.8%), with years of highest prevalence corresponding to years when the fewest hosts were captured in spring. Infested squirrels had from one to seven warbles, with 46.7% having only one warble. Prevalence did not vary significantly with host sex, age, or body weight. Prevalence was significantly higher (31.6%) in burned sites one year after a prescribed fire and tended to remain higher on burned than on unburned sites. Our results indicate that fires may alter the grassland environment in ways that increase the susceptibility of squirrels to bot fly infestation or the ability of flies to infest hosts
SGS-LTER long-term monitoring project: carnivore scat count on the Central Plains Experimental Range, Nunn, Colorado, USA 1997 -2006, ARS study number 98
The Short Grass Steppe site encompasses a large portion of the Colorado Piedmont Section of the western Great Plains. The extent is defined as the boundaries of the Central Plains Experimental Range (CPER). The CPER has a single ownership and landuse (livestock grazing). The PNG is characterized by a mosaic of ownership and land use. Ownership includes federal, state or private and land use consists of livestock grazing or row-crops. There are NGO conservation groups that exert influence over the area, particularly on federal lands.This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Repository (http://hdl.handle.net/10217/100254). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. Carnivores are among the most conspicuous, charismatic and economically important mammals in shortgrass steppe, yet relatively is little is known about their populations or of the ecological factors that determine their distribution and abundance, in part because densities tend to be low. Mammalian carnivores represent the top predators in grassland food webs, consuming rodents, rabbits, young ungulates and other small vertebrates. In addition, shortgrass steppe is the primary habitat of the swift fox (Vulpes velox), a species of special conservation concern throughout most of its range. Fox populations are thought to be limited by predation from coyotes (Canis latrans), the most common carnivore in these grasslands and a species of interest, both for its ecological roles and well as a target species for human exploitation, ie hunting and predator control. In 1994, we implemented a low-intensity sampling scheme to monitor long-term changes in relative abundance of mammalian carnivores and help us examine interactions between these predators and their small mammal prey, including rodents and rabbits. We estimated relative abundance of carnivores using scat surveys along a fixed route. Four times each year (January, April, July, October), we drove a 32-km route consisting of pasture two-track and gravel roads on the CPER. We first drove the route to remove all scats ('PRE-census'); we then returned ~14 d later and counted the number of scats deposited on the route ('CENSUS'). We recorded the species that deposited the scat and estimated the scat age based on external appearance (4 categories). Beginning in 1997, we recorded the vegetation (habitat) type and topographic position of all scat locations to describe habitat use. Latrines are indicated by locations containing multiple scats. We used the 'CENSUS' data to calculate a scat index, defined as the number of scats deposited per km of road per night. The scat index can be used to estimate population density using equations for coyotes (Knowlton 1982) and swift foxes (Schauster et al. 2002) that described the rate of scat deposition from surveys where density was known. To estimate density and compare trends among seasons and years, we omitted scats collected along the 8.3 km of the route that occurred on gravel county roads. These roads are graded sporadically, sometimes between pre-census and census surveys, which tended to remove scats. (NOTE: these observations are NOT omitted in the dataset).NSF Grant Number DEB-1027319
- …