48 research outputs found

    Depth Of Maximum Of Air-shower Profiles At The Pierre Auger Observatory. I. Measurements At Energies Above 1017.8ev

    Get PDF
    901

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aÎŒâ‰Ą(gΌ−2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~pâ€Č{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7∘^{\circ}C. The ratio ωa/ω~pâ€Č\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aÎŒ(FNAL)=116 592 040(54)×10−11a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both ÎŒ+\mu^+ and Ό−\mu^-, the new experimental average of aÎŒ(Exp)=116 592 061(41)×10−11a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Get PDF
    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6×1019 eV by analyzing cosmic rays with energies above E > = 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Beach volume on an eroding sand-gravel coast determined using ground penetrating radar

    No full text
    Mixed sand and gravel beaches form a wedge of protective sediment at the base of eroding cliffs. In profile these beaches are typically steep with a prominent storm berm. If the volume of beach sediment is insufficient, storms strip beach sediments seaward, exposing the cliff toe to wave attack. The beach volume is thus crucial to the protection of sea cliffs. In this article we describe a method of calculating alongshore variation in the volume of mixed sand and gravel beaches using ground penetrating radar (GPR). Eighteen sites were studied along 50 km of the east coast of South Island, New Zealand. The method was underpinned by an ability to map the boundary between beach sediments and underlying Pleistocene alluvial-fan sediments. This was achieved by studying the radar facies, particularly landward-dipping overwash deposits and seaward-dipping beach erosion surfaces. The method was ground-truthed in three ways: (1) a stream provided a clean section through one site that was imaged by radar; (2) a storm stripped beach sediment from three sites exposing the substrate, which was then surveyed and compared with radar profiles; (3) excavations in a previous study at nine sites were used to combine the stratigraphy with the radar images. GPR proved highly effective in this environment, revealing thin beaches in the south of the study area that thicken northward in the direction of alongshore sediment transport. Cliff height decreases northward such that there is a transition from beaches in front of cliffs, to beaches that overtop low cliffs, to barriers in front of a coastal lagoon
    corecore