43 research outputs found

    The impact of the temperature-CO2 decoupling on the state-dependency of paleo climate sensitivity during the late Pleistocene

    Get PDF
    Climate change projections for the future are uncertain, also due to inter-model differences. The application of these models to paleo times, which can be constrained by reconstructions, is therefore essential, not only to gain a better understanding of past climate changes, but also for model validation purposes. In this respect both data- and model-based approaches have been used to generate time series of global temperature changes, ∆Tg. The ratio of ∆Tg over radiative forcing, ∆R, defines the specific equilibrium climate sensitivity S, and has been suggested to be state-dependent, potentially increasing towards warming climates, and therefore suggesting climate sensitivity for the future to be at the upper end of the range of published results (Köhler et al., 2015, 2017). Here we reanalyse existing time series of ∆Tg and ∆R for the last 800,000 years and show that this proposed state-dependency of S is only found if ∆Tg is based on data (reconstructions), and not if ∆Tg is based on models (simulations). We furthermore identify that in data-based reconstructions ∆Tg is decoupled from atmospheric CO2 predominantely during times of decreasing obliquity (identical to periods of land-ice sheet growth and sea level fall), while in model simulations ∆Tg and CO2 vary in phase throughout. This multi-millennial decoupling of CO2 and temperature has been suggested to be partially caused by a sea level-induced surge in magma and CO2 fluxes from oceanic hotspot volcanoes and mid ocean ridges (Hasenclever et al., 2017). The neglection of these feedbacks between the solid Earth and the climate system in recent Earth system models is partly responsible for the data/model misfit, and illustrates our current limitation in the model-based interpretation of the paleo records. Paleo-based estimates of S might be restricted to data without this ∆Tg-CO2-decoupling leading to a 20% smaller quantification of S for interglacial conditions of the late Pleistocene

    Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography

    Get PDF
    Future projections of sea-level rise under strong warming scenarios are dominated by mass loss in the marine-grounded sectors of West Antarctica, where thinning shelves as a result of warming oceans can lead to reduced buttressing. This consequently leads to accelerated flow from the upstream grounded ice. However, the relation between warming oceans and increased melt rates under the shelves is very uncertain, especially when interactions with the changing shelf geometry are considered. Here, we compare six widely used, highly parameterised formulations relating sub-shelf melt to thermal forcing. We implemented them in an ice-sheet model, and applied the resulting set-up to an idealised-geometry setting, as well as to the Antarctic ice sheet. In our simulations, the differences in modelled ice-sheet evolution resulting from the choice of parameterisation, as well as the choice of numerical scheme used to apply sub-shelf melt near the grounding line, generally are larger than differences from ice-dynamical processes such as basal sliding, as well as uncertainties from the forcing scenario of the model providing the ocean forcing. This holds for the idealised-geometry experiments as well as for the experiments using a realistic Antarctic topography

    Including the efficacy of land ice changes in deriving climate sensitivity from paleodata

    Get PDF
    The equilibrium climate sensitivity (ECS) of climate models is calculated as the equilibrium global mean surface air warming resulting from a simulated doubling of the atmospheric CO2 concentration. In these simulations, long-term processes in the climate system, such as land ice changes, are not incorporated. Hence, climate sensitivity derived from paleodata has to be compensated for these processes, when comparing it to the ECS of climate models. Several recent studies found that the impact these long-term processes have on global temperature cannot be quantified directly through the global radiative forcing they induce. This renders the prevailing approach of deconvoluting paleotemperatures through a partitioning based on radiative forcings inaccurate. Here, we therefore implement an efficacy factor ε[LI] that relates the impact of land ice changes on global temperature to that of CO2 changes in our calculation of climate sensitivity from paleodata. We apply our refined approach to a proxy-inferred paleoclimate dataset, using ε[LI]=0.45+0.34−0.20 based on a multi-model assemblage of simulated relative influences of land ice changes on the Last Glacial Maximum temperature anomaly. The implemented ε[LI] is smaller than unity, meaning that per unit of radiative, forcing the impact on global temperature is less strong for land ice changes than for CO2 changes. Consequently, our obtained ECS estimate of 5.8±1.3 K, where the uncertainty reflects the implemented range in ε[LI], is ∼50 % higher than when differences in efficacy are not considered

    Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)

    Get PDF
    Ice-dynamical processes constitute a large uncertainty in future projections of sea-level rise caused by anthropogenic climate change. Improving our understanding of these processes requires ice-sheet models that perform well at simulating both past and future ice-sheet evolution. Here, we present version 2.0 of the ice-sheet model IMAU-ICE, which uses the depth-integrated viscosity approximation (DIVA) to solve the stress balance. We evaluate its performance in a range of benchmark experiments, including simple analytical solutions and both schematic and realistic model intercomparison exercises. IMAU-ICE has adopted recent developments in the numerical treatment of englacial stress and sub-shelf melt near the grounding line, which result in good performance in experiments concerning grounding-line migration (MISMIP, MISMIP+) and buttressing (ABUMIP). This makes it a model that is robust, versatile, and user-friendly, which will provide a firm basis for (palaeo-)glaciological research in the coming years.publishedVersio

    Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle

    Get PDF
    During the last glacial cycle (LGC), ice sheets covered large parts of Eurasia and North America, which resulted in ∼120 m of sea level change. Ice sheet-climate interactions have considerable influence on temperature and precipitation patterns and therefore need to be included when simulating this time period. Ideally, ice sheet-climate interactions are simulated by a high-resolution Earth system model. While these models are capable of simulating climates at a certain point in time, such as the pre-industrial (PI) or the Last Glacial Maximum (LGM; 21 000 years ago), a full transient glacial cycle is currently computationally unfeasible as it requires a too-large amount of computation time. Nevertheless, ice sheet models require forcing that captures the gradual change in climate over time to calculate the accumulation and melt of ice and its effect on ice sheet extent and volume changes. Here we simulate the LGC using an ice sheet model forced by LGM and PI climates. The gradual change in climate is modelled by transiently interpolating between pre-calculated results from a climate model for the LGM and the PI. To assess the influence of ice sheet-climate interactions, we use two different interpolation methods: the climate matrix method, which includes a temperature-albedo and precipitation-topography feedback, and the glacial index method, which does not. To investigate the sensitivity of the results to the prescribed climate forcing, we use the output of several models that are part of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). In these simulations, ice volume is prescribed, and the climate is reconstructed with a general circulation model (GCM). Here we test those models by using their climate to drive an ice sheet model over the LGC. We find that the ice volume differences caused by the climate forcing exceed the differences caused by the interpolation method. Some GCMs produced unrealistic LGM volumes, and only four resulted in reasonable ice sheets, with LGM Northern Hemisphere sea level contribution ranging between 74-113 m with respect to the present day. The glacial index and climate matrix methods result in similar ice volumes at the LGM but yield a different ice evolution with different ice domes during the inception phase of the glacial cycle and different sea level rates during the deglaciation phase. The temperature-albedo feedback is the main cause of differences between the glacial index and climate matrix methods

    Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)

    Get PDF
    Ice-dynamical processes constitute a large uncertainty in future projections of sea-level rise caused by anthropogenic climate change. Improving our understanding of these processes requires ice-sheet models that perform well at simulating both past and future ice-sheet evolution. Here, we present version 2.0 of the ice-sheet model IMAU-ICE, which uses the depth-integrated viscosity approximation (DIVA) to solve the stress balance. We evaluate its performance in a range of benchmark experiments, including simple analytical solutions and both schematic and realistic model intercomparison exercises. IMAU-ICE has adopted recent developments in the numerical treatment of englacial stress and sub-shelf melt near the grounding line, which result in good performance in experiments concerning grounding-line migration (MISMIP, MISMIP+) and buttressing (ABUMIP). This makes it a model that is robust, versatile, and user-friendly, which will provide a firm basis for (palaeo-)glaciological research in the coming years

    Simulated land ice: latitudinal changes (0-2.6 Ma) and importance of CO2-glaciation divergence during times of decreasing obliquity (0-800 ka)

    Get PDF
    Following Milankovitch's theory the incoming insolation or summer energy at 65°N is typically analysed to predict the waxing or waning of land ice. We here use a model-based deconvolution of the LR04 benthic-d18O stack into land ice distribution (de Boer et al., 2014, Köhler et al., 2015) to verify if the latitudinal focal point of land ice dynamics has changed over the last 2 Myr or whether this choice of 65°N in orbital data is indeed well justified. We find that the 5°-latitudinal band which contributes most to land ice albedo radiative forcing (ΔR_[LI]) is 70-75°N between 2.0-1.5 Myr, which is then until 1.0 Myr gradually substituted by 65-70°N. During the last 1 Myr both 60-65°N and 65-70°N dominate ΔR_[LI] and contribute approximately the same amount, while the relative importance of 70-75°N is shrinking. Our analyses illustrates that the choice of 65°N seems for the last 1 Myr to be well justified, while for earlier parts of the last 2 Myr the dominant land ice changes seems to happen up to 10° further to the north. Focusing on the last 800 kyr (the time for which precise data on atmospheric CO2 concentration exists) we furthermore find that the multi-millennial land ice growth and proxy-based reconstruction of global cooling (= the glaciation) appear synchronously to each other and to decreasing obliquity, but diverge from CO2. This suggests that the global cooling associated with Earth's way into an ice age as deduced in the reconstructions has to be mainly caused by the land ice albedo feedback, and is not dominated by the CO2 greenhouse forcing. One way of perceiving this CO2-glaciation divergence in reconstructions is that the reduced incoming insolation at high latitudes causes land ice growth and cooling, while there is a coexisting process that keeps CO2 at a relatively constant level. Solid Earth modeling experiments have indicated that falling sea level might lead to enhanced magma and CO2 production at mid-ocean ridges. Hasenclever et al. (2017) suggested that the combination of marine volcanism at mid-ocean ridges and at hot spot island volcanoes might react to decreasing sea level and be a potential cause for this CO2-glaciation divergence. This CO2-glaciation divergence needs to be considered, when using paleo data to quantify paleoclimate sensitivity: periods with diverging CO2 and global temperature change should be filtered out when approximating the relationship between global temperature rise and CO2 concentrations (Köhler et al., 2018). References: de Boer et al. (2014). https://doi.org/10.1038/ncomms3999. Köhler et al. (2015). https://doi.org/10.5194/cp-11-1801-2015. Hasenclever et al. (2017). https://doi.org/10.1038/ncomms15867. Köhler et al. (2018). https://doi.org/10.1029/2018GL077717

    Milankovitch-paced erosion in the southern Central Andes

    Get PDF
    It has long been hypothesized that climate can modify both the pattern and magnitude of erosion in mountainous landscapes, thereby controlling morphology, rates of deformation, and potentially modulating global carbon and nutrient cycles through weathering feedbacks. Although conceptually appealing, geologic evidence for a direct climatic control on erosion has remained ambiguous owing to a lack of high-resolution, long-term terrestrial records and suitable field sites. Here we provide direct terrestrial field evidence for long-term synchrony between erosion rates and Milankovitch-driven, 400-kyr eccentricity cycles using a Plio-Pleistocene cosmogenic radionuclide paleo-erosion rate record from the southern Central Andes. The observed climate-erosion coupling across multiple orbital cycles, when combined with results from the intermediate complexity climate model CLIMBER-2, are consistent with the hypothesis that relatively modest fluctuations in precipitation can cause synchronous and nonlinear responses in erosion rates as landscapes adjust to ever-evolving hydrologic boundary conditions imposed by oscillating climate regimes
    corecore