46 research outputs found

    Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

    Full text link
    [EN] Increased availability of methane from shale gas and stranded gas deposits in the recent years may facilitate the production of ethylene by means of potentially more competitive routes than the state-of-the-art steam cracking processes. One appealing route is the oxidative coupling of methane (OCM), which is considered in this work for the production of ethylene by means of the use of catalytic membrane reactors (CMR) based on Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) ceramic material. In a first approach, a screening of 15 formulations as catalysts for the ethylene-ethane production was conducted on CMR consisting of disk-shaped planar BSCF membranes. At 900 degrees C, the maximum C-2 selectivity was 70%, reached with Ba0.5Sr0.5FeO3-delta and La0.5Ce0.1Sr0.4Co0.8Fe0.2O3-delta catalysts. On the other hand, low CH4 conversions (X-CH4) resulted in C-2 yields below 3%. Operation at 1,000 degrees C significantly shifted X-CH4 for all the activated membranes due to the decrease in CH4/O-2 ratios, thus obtaining C-2 yields close to 9% and productivities of ca. 1.2ml.min(-1).cm(-2) with Ce0.9Gd0.1O2-delta and Ba0.5Sr0.5Co0.8Fe0.2O3-delta impregnated with Mn-Na2WO4 catalysts. The performance of OCM reaction was also studied in a tubular catalytic membrane reactor. Tubular configuration improved C-2 yield by minimizing CH4/O-2 ratios up to 1.7, obtaining a maximum of 15.6% at 900 degrees C with a BSCF capillary membrane activated with a packed bed of 2 wt% Mn/5 wt% Na2WO4 on SiO2 catalyst.Financial support by the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) and by the EU through FP7 GREEN-CC Project (GA 608524), is gratefully acknowledged. The authors want also acknowledge the Electron Microscopy Service from the Universitat Politecnica de Valencia for their support in the SEM analysis performed in this work.García-Fayos, J.; Lobera González, MP.; Balaguer Ramirez, M.; Serra Alfaro, JM. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials. 5. https://doi.org/10.3389/fmats.2018.00031S5Akin, F. T., & Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE Journal, 48(10), 2298-2306. doi:10.1002/aic.690481019Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., & Sanger, A. R. (1990). Conversion of Methane by Oxidative Coupling. Catalysis Reviews, 32(3), 163-227. doi:10.1080/01614949009351351Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., & Pak, A. (2012). Preparation and Oxygen Permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Perovskite-Type Membranes: Experimental Study and Mathematical Modeling. Industrial & Engineering Chemistry Research, 51(7), 3069-3080. doi:10.1021/ie202434kAseem, A., & Harold, M. P. (2018). C 2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. Chemical Engineering Science, 175, 199-207. doi:10.1016/j.ces.2017.09.035Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581wBhasin, M. ., McCain, J. ., Vora, B. ., Imai, T., & Pujadó, P. . (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1-2), 397-419. doi:10.1016/s0926-860x(01)00816-xBhatia, S., Thien, C. Y., & Mohamed, A. R. (2009). Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chemical Engineering Journal, 148(2-3), 525-532. doi:10.1016/j.cej.2009.01.008Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178Czuprat, O., Schiestel, T., Voss, H., & Caro, J. (2010). Oxidative Coupling of Methane in a BCFZ Perovskite Hollow Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 49(21), 10230-10236. doi:10.1021/ie100282gErskine, K. M., Meier, A. M., & Pilgrim, S. M. (2002). Journal of Materials Science, 37(8), 1705-1709. doi:10.1023/a:1014912923977Farrell, B. L., Igenegbai, V. O., & Linic, S. (2016). A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts. ACS Catalysis, 6(7), 4340-4346. doi:10.1021/acscatal.6b01087Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P., & Parton, R. (2003). Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. Catalysis Today, 81(3), 337-345. doi:10.1016/s0920-5861(03)00132-9Hutchings, G. J., Scurrell, M. S., & Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. Chemical Society Reviews, 18, 251. doi:10.1039/cs9891800251Ito, T., & Lunsford, J. H. (1985). Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature, 314(6013), 721-722. doi:10.1038/314721b0Karakaya, C., Zhu, H., Zohour, B., Senkan, S., & Kee, R. J. (2017). Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La2 O3 /CeO2 Nanofiber Fabric Catalysts. ChemCatChem, 9(24), 4538-4551. doi:10.1002/cctc.201701172Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29(1-2), 49-66. doi:10.1016/s1387-1811(98)00320-5KELLER, G. (1982). Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. Journal of Catalysis, 73(1), 9-19. doi:10.1016/0021-9517(82)90075-6Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530Lobera, M. P., Escolástico, S., Garcia-Fayos, J., & Serra, J. M. (2012). Ethylene Production by ODHE in Catalytically Modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane Reactors. ChemSusChem, 5(8), 1587-1596. doi:10.1002/cssc.201100747Lobera, M. P., Escolástico, S., & Serra, J. M. (2011). High Ethylene Production through Oxidative Dehydrogenation of Ethane Membrane Reactors Based on Fast Oxygen-Ion Conductors. ChemCatChem, 3(9), 1503-1508. doi:10.1002/cctc.201100055Lunsford, J. H. (1995). The Catalytic Oxidative Coupling of Methane. Angewandte Chemie International Edition in English, 34(9), 970-980. doi:10.1002/anie.199509701Lunsford, J. H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catalysis Today, 63(2-4), 165-174. doi:10.1016/s0920-5861(00)00456-9Maitra, A. M. (1993). Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 104(1), 11-59. doi:10.1016/0926-860x(93)80209-9Mleczko, L., & Baerns, M. (1995). Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Processing Technology, 42(2-3), 217-248. doi:10.1016/0378-3820(94)00121-9Mleczko, L., Pannek, U., Niemi, V. M., & Hiltunen, J. (1996). Oxidative Coupling of Methane in a Fluidized-Bed Reactor over a Highly Active and Selective Catalyst. Industrial & Engineering Chemistry Research, 35(1), 54-61. doi:10.1021/ie950145sOlivier, L., Haag, S., Mirodatos, C., & van Veen, A. C. (2009). Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catalysis Today, 142(1-2), 34-41. doi:10.1016/j.cattod.2009.01.009Othman, N. H., Wu, Z., & Li, K. (2015). An oxygen permeable membrane microreactor with an in-situ deposited Bi 1.5 Y 0.3 Sm 0.2 O 3−δ catalyst for oxidative coupling of methane. Journal of Membrane Science, 488, 182-193. doi:10.1016/j.memsci.2015.04.027OTSUKA, K. (1986). Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. Journal of Catalysis, 100(2), 353-359. doi:10.1016/0021-9517(86)90102-8Pak, S., Qiu, P., & Lunsford, J. H. (1998). Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO Catalysts. Journal of Catalysis, 179(1), 222-230. doi:10.1006/jcat.1998.2228PALERMO, A., HOLGADOVAZQUEZ, J., LEE, A., TIKHOV, M., & LAMBERT, R. (1998). Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. Journal of Catalysis, 177(2), 259-266. doi:10.1006/jcat.1998.2109ReportersP. The Ethylene Technology Report 20162016Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., & Kriegel, R. (2012). Oxygen permeation of various archetypes of oxygen membranes based on BSCF. AIChE Journal, 58(10), 3195-3202. doi:10.1002/aic.13843Spallina, V., Velarde, I. C., Jimenez, J. A. M., Godini, H. R., Gallucci, F., & Van Sint Annaland, M. (2017). Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Conversion and Management, 154, 244-261. doi:10.1016/j.enconman.2017.10.061Stansch, Z., Mleczko, L., & Baerns, M. (1997). Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst. Industrial & Engineering Chemistry Research, 36(7), 2568-2579. doi:10.1021/ie960562kSunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074Tan, X., & Li, K. (2006). Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor. Industrial & Engineering Chemistry Research, 45(1), 142-149. doi:10.1021/ie0506320TAN, X., PANG, Z., GU, Z., & LIU, S. (2007). Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. Journal of Membrane Science, 302(1-2), 109-114. doi:10.1016/j.memsci.2007.06.033Ten Elshof, J. E., Bouwmeester, H. J. M., & Verweij, H. (1995). Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Applied Catalysis A: General, 130(2), 195-212. doi:10.1016/0926-860x(95)00098-4Thaler, F., Müller, M., & Spatschek, R. (2016). Oxygen permeation through perovskitic membranes: The influence of steam in the sweep on the permeation performance. AIMS Materials Science, 3(3), 1126-1137. doi:10.3934/matersci.2016.3.1126Wang, D. J., Rosynek, M. P., & Lunsford, J. H. (1995). Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts. Journal of Catalysis, 155(2), 390-402. doi:10.1006/jcat.1995.1221Wang, H., Cong, Y., & Yang, W. (2005). Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catalysis Today, 104(2-4), 160-167. doi:10.1016/j.cattod.2005.03.079Xu, S. J., & Thomson, W. J. (1997). Perovskite-type oxide membranes for the oxidative coupling of methane. AIChE Journal, 43(S11), 2731-2740. doi:10.1002/aic.690431319Zeng, Y., & Lin, Y. S. (2001). Oxidative coupling of methane on improved bismuth oxide membrane reactors. AIChE Journal, 47(2), 436-444. doi:10.1002/aic.690470220Zeng, Y., Lin, Y. S., & Swartz, S. L. (1998). Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 150(1), 87-98. doi:10.1016/s0376-7388(98)00182-3Zhou, W., Ran, R., Shao, Z., Zhuang, W., Jia, J., Gu, H., … Xu, N. (2008). Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 56(12), 2687-2698. doi:10.1016/j.actamat.2008.02.00

    Die exotischen zierfische in wort und bild.

    No full text

    Comprehensive Kinetics of Oxidative Coupling of Methane over the La 2

    No full text
    corecore