46 research outputs found

    The Genesis Mission: Contamination Control and Curation

    Get PDF
    The Genesis mission, launched in August 2001, is collecting samples of the solar wind and will return to Earth in 2004. Genesis can be viewed as the most fundamental of NASA's sample return missions because it is expected to provide insight into the initial elemental and isotopic composition of the solar nebula from which all other planetary objects formed. The data from this mission will have a large impact on understanding the origins and diversity of planetary materials. The collectors consist of clean, pure materials into which the solar wind will imbed. Science and engineering issues such as bulk purity, cleanliness, retention of solar wind, and ability to withstand launch and entry drove material choices. Most of the collector materials are installed on array frames that are deployed from a clean science canister. Two of the arrays are continuously exposed for collecting the bulk solar wind; the other three are only exposed during specific solar wind regimes as measured by ion and electron monitors. Other materials are housed as targets at the focal point of an electrostatic mirror, or "concentrator", designed to enhance the flux of specific solar wind species. Johnson Space Center (JSC) has two principal responsibilities for the Genesis mission: contamination control and curation. Precise and accurate measurements of the composition of the solar atoms require that the collector materials be extremely clean and well characterized before launch and during the mission. Early involvement of JSC curation personnel in concept development resulted in a mission designed to minimize contaminants from the spacecraft and operations. A major goal of the Genesis mission is to provide a reservoir of materials for the 21 51 century. When the collector materials are returned to Earth, they must be handled in a clean manner and their condition well documented. Information gained in preliminary examination of the arrays and detailed surveys of each collector will be used to guide sample allocations to the scientific community. Samples allocated for analysis are likely to be small sections of individual collectors, therefore subdividing the materials must take place in a clean, well characterized way. A major focus of current research at JSC includes identifying and characterizing the contamination, waste, and alteration of the sample when using different subdividing, transport, and storage techniques and developing protocols for reducing their impact on the scientific integrity of the mission

    Sample Return Missions Where Contamination Issues are Critical: Genesis Mission Approach

    Get PDF
    The Genesis Mission, sought the challenging analytical goals of accurately and precisely measuring the elemental and isotopic composition of the Sun to levels useful for planetary science, requiring sensitivities of ppm to ppt in the outer 100 nm of collector materials. Analytical capabilities were further challenged when the hard landing in 2004 broke open the canister containing the super-clean collectors. Genesis illustrates that returned samples allow flexibility and creativity to recover from setbacks

    Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    Get PDF
    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film

    Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    Get PDF
    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003

    Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    Get PDF
    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis

    Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return

    Get PDF
    Sample return missions require chemical contamination to be minimized and potential sources of contamination to be documented and preserved for future use. Genesis focused on and successfully accomplished the following: - Early involvement provided input to mission design: a) cleanable materials and cleanable design; b) mission operation parameters to minimize contamination during flight. - Established contamination control authority at a high level and developed knowledge and respect for contamination control across all institutions at the working level. - Provided state-of-the-art spacecraft assembly cleanroom facilities for science canister assembly and function testing. Both particulate and airborne molecular contamination was minimized. - Using ultrapure water, cleaned spacecraft components to a very high level. Stainless steel components were cleaned to carbon monolayer levels (10 (sup 15) carbon atoms per square centimeter). - Established long-term curation facility Lessons learned and areas for improvement, include: - Bare aluminum is not a cleanable surface and should not be used for components requiring extreme levels of cleanliness. The problem is formation of oxides during rigorous cleaning. - Representative coupons of relevant spacecraft components (cut from the same block at the same time with identical surface finish and cleaning history) should be acquired, documented and preserved. Genesis experience suggests that creation of these coupons would be facilitated by specification on the engineering component drawings. - Component handling history is critical for interpretation of analytical results on returned samples. This set of relevant documents is not the same as typical documentation for one-way missions and does include data from several institutions, which need to be unified. Dedicated resources need to be provided for acquiring and archiving appropriate documents in one location with easy access for decades. - Dedicated, knowledgeable contamination control oversight should be provided at sites of fabrication and integration. Numerous excellent Genesis chemists and analytical facilities participated in the contamination oversight; however, additional oversight at fabrication sites would have been helpful

    Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    Get PDF
    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments

    JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    Get PDF
    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities

    NASA's Optical Measurement Program 2014

    Get PDF
    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris surveys. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m are both employed to acquire filter photometry data as well as synchronously observe targets in selected optical filters. Obtaining data synchronously yields data for material composition studies as well as longer orbital arc data on the same target without time delay or bias from a rotating, tumbling, or spinning target. Observations of GEO orbital debris using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) began in 2011. Through the data acquired on Baade, debris has been detected that reaches approx. 3 magnitudes fainter than detections with MODEST, while the spectral data from Clay provide better resolved information used in material characterization analyses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and sourcetarget- sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a modified Ritchey-Chrtien configuration on a double horseshoe equatorial mount to allow tracking objects at LEO rates through the dome's keyhole at zenith. Through the data collection techniques employed at these unique facilities, NASA's ODPO has developed a multifaceted approach to characterize the orbital debris risk to satellites in various altitudes and provide insight leading toward material characterization of debris via photometric and spectroscopic measurements. Ultimately, the data are used in conjunction with in-situ and radar measurements to provide accurate data for models of our space environment and for facilitating spacecraft risk assessment

    Genesis Solar Wind Sample Curation: A Progress Report

    Get PDF
    In the year since the Genesis solar wind collector fragments were returned, early science samples, specimens for cleaning experiments, and science allocations have been distributed. Solar wind samples are stored under nitrogen and handled in an ISO Class 4 (Class 10) laboratory. For array collector fragments, a basic characterization process has been established. This characterization consists of identification of solar wind regime, whole fragment image for identification and surface quality, higher magnification images for contaminant particle density, and assessment of molecular film contaminant thickness via ellipsometry modeling. Compilations of this characterization data for AuOS (gold film on sapphire), and sapphire from the bulk solar wind for fragments greater than 2 cm are available. Removal of contaminant particles using flowing ultrapure water (UPW) energized megasonically is provided as requested
    corecore