375 research outputs found

    Adaptive laboratory evolution of cupriavidus necator H16 for carbon co-utilization with glycerol

    Get PDF
    Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization

    Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis

    Get PDF
    Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative to traditional antibody binding proteins for highly specific molecular recognition applications. This paper reports for the first time the use of these versatile proteins for material binding, and as tools for controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic magnetite nanoparticles. The selected variable regions display a strong preference for basic residues such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel additives for wider nanomaterial fabrication

    Entanglement of Antarctic fur seals at Bird Island, South Georgia

    Get PDF
    Between November 1989 and March 2013, 1033 Antarctic fur seals Arctocephalus gazella were observed entangled in marine debris at Bird Island, South Georgia. The majority of entanglements involved plastic packaging bands (43%), synthetic line (25%) or fishing net (17%). Juvenile male seals were the most commonly entangled (44%). A piecewise regression analysis showed that a single breakpoint at 1994 gave the best description of inter-annual variability in the data, with higher levels of entanglements prior to 1994 (mean = 110 ± 28) followed by persistent lower levels (mean = 28 ± 4). Records of entanglements from other sites monitored in the Scotia Sea are also presented. Legislation imposed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has, to a certain extent, been effective, but persistent low levels of seal entanglements are still a cause for concern at South Georgia

    Methods for detecting and quantifying individual specialisation in movement and foraging strategies of marine predators

    Get PDF
    There is increasing realisation that individuals in many animal populations differ substantially in resource, space or habitat use. Differences that cannot be attributed to any a priori way of classifying individuals (i.e. age, sex and other group effects) are often termed ‘individual specialisation’. The aim of this paper is to assess the most common approaches for detecting and quantifying individual specialisation and consistencies in foraging behaviour, movement patterns and diet of marine predators using 3 types of data: conventional diet data, stable isotope ratios and tracking data. Methods using conventional diet data rely on a comparison between the proportions of each dietary source in the total diet and in the diet of individuals, or analyses of the statistical distribution of a prey metric (e.g. size); the latter often involves comparing ratios of individual and population variance. Approaches frequently used to analyse stable isotope or tracking data reduced to 1 dimension (trip characteristics, e.g. maximum trip distance or latitude/longitude at certain landmarks) include correlation tests and repeatability analysis. Finally, various spatial analyses are applied to other types of tracking data (e.g. distances between centroids of distributions or migratory routes, or overlap between distributions), and methods exist to compare habitat use. We discuss the advantages and disadvantages of these approaches, issues arising from other effects unrelated to individual specialisation per se (in particular those related to temporal scale) and potential solutions

    Thirty years of marine debris in the Southern Ocean: annual surveys of two island shores in the Scotia Sea

    Get PDF
    We report on three decades of repeat surveys of beached marine debris at two locations in the Scotia Sea, in the Southwest Atlantic sector of the Southern Ocean. Between October 1989 and March 2019 10,112 items of beached debris were recovered from Main Bay, Bird Island, South Georgia in the northern Scotia Sea. The total mass of items (data from 1996 onwards) was 101 kg. Plastic was the most commonly recovered item (97.5% by number; 89% by mass) with the remainder made up of fabric, glass, metal, paper and rubber. Mean mass per item was 0.01 kg and the rate of accumulation was 100 items km−1 month−1. Analyses showed an increase in the number of debris items recovered (5.7 per year) but a decline in mean mass per item, suggesting a trend towards more, smaller items of debris at Bird Island. At Signy Island, South Orkney Islands, located in the southern Scotia Sea and within the Antarctic Treaty area, debris items were collected from three beaches, during the austral summer only, between 1991 and 2019. In total 1304 items with a mass of 268 kg were recovered. Plastic items contributed 84% by number and 80% by mass, with the remainder made up of metal (6% by number; 14% by mass), rubber (4% by number; 3% by mass), fabric, glass and paper (<1% by number; 3% by mass). Mean mass per item was 0.2 kg and rate of accumulation was 3 items km−1 month−1. Accumulation rates were an order of magnitude higher on the western (windward) side of the island (13–17 items km−1 month−1) than the eastern side (1.5 items km−1 month−1). Analyses showed a slight decline in number and slight increase in mean mass of debris items over time at Signy Island. This study highlights the prevalence of anthropogenic marine debris (particularly plastic) in the Southern Ocean. It shows the importance of long-term monitoring efforts in attempting to catalogue marine debris and identify trends, and serves warning of the urgent need for a wider understanding of the extent of marine debris across the whole of the Southern Ocean

    Oxidase enzymes as sustainable oxidation catalysts

    Get PDF
    Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals

    Habitat use and spatial fidelity of male South American sea lions during the nonbreeding period

    Get PDF
    Conditions experienced during the nonbreeding period have profound long-term effects on individual fitness and survival. Therefore, knowledge of habitat use during the nonbreeding period can provide insights into processes that regulate populations. At the Falkland Islands, the habitat use of South American sea lions (Otaria flavescens) during the nonbreeding period is of particular interest because the population is yet to recover from a catastrophic decline between the mid-1930s and 1965, and nonbreeding movements are poorly understood. Here, we assessed the habitat use of adult male (n = 13) and juvenile male (n = 6) South American sea lions at the Falkland Islands using satellite tags and stable isotope analysis of vibrissae. Male South American sea lions behaved like central place foragers. Foraging trips were restricted to the Patagonian Shelf and were typically short in distance and duration (127 ± 66 km and 4.1 ± 2.0 days, respectively). Individual male foraging trips were also typically characterized by a high degree of foraging site fidelity. However, the isotopic niche of adult males was smaller than juvenile males, which suggested that adult males were more consistent in their use of foraging habitats and prey over time. Our findings differ from male South American sea lions in Chile and Argentina, which undertake extended movements during the nonbreeding period. Hence, throughout their breeding range, male South American sea lions have diverse movement patterns during the nonbreeding period that intuitively reflects differences in the predictability or accessibility of preferred prey. Our findings challenge the long-standing notion that South American sea lions undertake a winter migration away from the Falkland Islands. Therefore, impediments to South American sea lion population recovery likely originate locally and conservation measures at a national level are likely to be effective in addressing the decline and the failure of the population to recover

    Risk exposure trade-offs in the ontogeny of sexual segregation in Antarctic fur seal pups

    Get PDF
    Sexual segregation has important ecological implications, but its initial development in early life stages is poorly understood. We investigated the roles of size dimorphism, social behavior, and predation risk on the ontogeny of sexual segregation in Antarctic fur seal, Arctocephalus gazella, pups at South Georgia. Beaches and water provide opportunities for pup social interaction and learning (through play and swimming) but increased risk of injury and death (from other seals, predatory birds, and harsh weather), whereas tussock grass provides shelter from these risks but less developmental opportunities. One hundred pups were sexed and weighed, 50 on the beach and 50 in tussock grass, in January, February, and March annually from 1989 to 2018. Additionally, 19 male and 16 female pups were GPS-tracked during lactation from December 2012. Analysis of pup counts and habitat use of GPS-tracked pups suggested that females had a slightly higher association with tussock grass habitats and males with beach habitats. GPS-tracked pups traveled progressively further at sea as they developed, and males traveled further than females toward the end of lactation. These sex differences may reflect contrasting drivers of pup behavior: males being more risk prone to gain social skills and lean muscle mass and females being more risk averse to improve chances of survival, ultimately driven by their different reproductive roles. We conclude that sex differences in habitat use can develop in a highly polygynous species prior to the onset of major sexual size dimorphism, which hints that these sex differences will increasingly diverge in later life

    Intra-specific niche partitioning in Antarctic fur seals, Arctocephalus gazella

    Get PDF
    Competition for resources within a population can lead to niche partitioning between sexes, throughout ontogeny and among individuals, allowing con-specifics to co-exist. We aimed to quantify such partitioning in Antarctic fur seals, Arctocephalus gazella, breeding at South Georgia, which hosts ~95% of the world’s population. Whiskers were collected from 20 adult males and 20 adult females and stable isotope ratios were quantified every 5 mm along the length of each whisker. Nitrogen isotope ratios (δ15N) were used as proxies for trophic position and carbon isotope ratios (δ13C) indicated foraging habitat. Sexual segregation was evident: δ13C values were significantly lower in males than females, indicating males spent more time foraging south of the Polar Front in maritime Antarctica. In males δ13C values declined with age, suggesting males spent more time foraging south throughout ontogeny. In females δ13C values revealed two main foraging strategies: 70% of females spent most time foraging south of the Polar Front and had similar δ15N values to males, while 30% of females spent most time foraging north of the Polar Front and had significantly higher δ15N values. This niche partitioning may relax competition and ultimately elevate population carrying capacity with implications for ecology, evolution and conservation

    Pup vibrissae stable isotopes reveal geographic differences in adult female southern sea lion habitat use during gestation

    Get PDF
    Individuals within populations often differ substantially in habitat use, the ecological consequences of which can be far reaching. Stable isotope analysis provides a convenient and often cost effective means of indirectly assessing the habitat use of individuals that can yield valuable insights into the spatiotemporal distribution of foraging specialisations within a population. Here we use the stable isotope ratios of southern sea lion (Otaria flavescens) pup vibrissae at the Falkland Islands, in the South Atlantic, as a proxy for adult female habitat use during gestation. A previous study found that adult females from one breeding colony (Big Shag Island) foraged in two discrete habitats, inshore (coastal) or offshore (outer Patagonian Shelf). However, as this species breeds at over 70 sites around the Falkland Islands, it is unclear if this pattern is representative of the Falkland Islands as a whole. In order to characterize habitat use, we therefore assayed carbon (δ13C) and nitrogen (δ15N) ratios from 65 southern sea lion pup vibrissae, sampled across 19 breeding colonies at the Falkland Islands. Model-based clustering of pup isotope ratios identified three distinct clusters, representing adult females that foraged inshore, offshore, and a cluster best described as intermediate. A significant difference was found in the use of inshore and offshore habitats between West and East Falkland and between the two colonies with the largest sample sizes, both of which are located in East Falkland. However, habitat use was unrelated to the proximity of breeding colonies to the Patagonian Shelf, a region associated with enhanced biological productivity. Our study thus points towards other factors, such as local oceanography and its influence on resource distribution, playing a prominent role in inshore and offshore habitat use
    • …
    corecore