1,357 research outputs found
Dissipative Quantum Ising model in a cold atomic spin-boson mixture
Using cold bosonic atoms with two (hyperfine) ground states, we introduce a
spin-boson mixture which allows to implement the quantum Ising model in a
tunable dissipative environment. The first specie lies in a deep optical
lattice with tightly confining wells and forms a spin array; spin-up/down
corresponds to occupation by one/no atom at each site. The second specie forms
a superfluid reservoir. Different species are coupled coherently via laser
transitions and collisions. Whereas the laser coupling mimics a transverse
field for the spins, the coupling to the reservoir sound modes induces a
ferromagnetic (Ising) coupling as well as dissipation. This gives rise to an
order-disorder quantum phase transition where the effect of dissipation can be
studied in a controllable manner.Comment: 4 pages, 2 figures, 1 table; Title modified and cosmetic change
Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry
Three dimensional hydrodynamic simulations have been performed using smoothed
particle hydrodynamics (SPH) in order to study the effects of discrete jets on
the processes of plasma liner formation, implosion on vacuum, and expansion.
The pressure history of the inner portion of the liner was qualitatively and
quantitatively similar from peak compression through the complete stagnation of
the liner among simulation results from two one dimensional
radiationhydrodynamic codes, 3D SPH with a uniform liner, and 3D SPH with 30
discrete plasma jets. Two dimensional slices of the pressure show that the
discrete jet SPH case evolves towards a profile that is almost
indistinguishable from the SPH case with a uniform liner, showing that
non-uniformities due to discrete jets are smeared out by late stages of the
implosion. Liner formation and implosion on vacuum was also shown to be robust
to Rayleigh-Taylor instability growth. Interparticle mixing for a liner
imploding on vacuum was investigated. The mixing rate was very small until
after peak compression for the 30 jet simulation.Comment: 28 pages, 16 figures, submitted to Physics of Plasmas (2012
SDSS IV MaNGA - Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies
We present a study of the kinematics of the extraplanar ionized gas around
several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache
Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies
out of more than 1400 extragalactic targets observed by MaNGA, in which we
found 25 galaxies (or 37%) with regular lagging of the rotation curve at large
distances from the galactic midplane. We model the observed emission
velocity fields in the galaxies, taking projection effects and a simple model
for the dust extinction into the account. We show that the vertical lag of the
rotation curve is necessary in the modeling, and estimate the lag amplitude in
the galaxies. We find no correlation between the lag and the star formation
rate in the galaxies. At the same time, we report a correlation between the lag
and the galactic stellar mass, central stellar velocity dispersion, and axial
ratio of the light distribution. These correlations suggest a possible higher
ratio of infalling-to-local gas in early-type disk galaxies or a connection
between lags and the possible presence of hot gaseous halos, which may be more
prevalent in more massive galaxies. These results again demonstrate that
observations of extraplanar gas can serve as a potential probe for accretion of
gas.Comment: 13 pages, 11 figures, accepted for publication in Ap
On acoustic scattering by a shell-covered seafloor
Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 551-555, doi:10.1121/1.429585.Acoustic scattering by the seafloor is sometimes influenced, if not dominated, by the presence of discrete volumetric objects such as shells. A series of measurements of target strength of a type of benthic shelled animal and associated scattering modeling have recently been completed (Stanton et al., "Acoustic scattering by benthic and planktonic shelled animals," J. Acoust. Soc. Am., this issue). The results of that study are used herein to estimate the scattering by the seafloor with a covering of shells at high acoustic frequencies. A simple formulation is derived that expresses the area scattering strength of the seafloor in terms of the average reduced target strength or material properties of the discrete scatterers and their packing factor (where the reduced target strength is the target strength normalized by the geometric cross section of the scatterers and the averaging is done over orientation and/or a narrow range of size or frequency). The formula shows that, to first order, the backscattering at high acoustic frequencies by a layer of shells (or other discrete bodies such as rocks) depends principally upon material properties of the objects and packing factor and is independent of size and acoustic frequency. Estimates of area scattering strength using this formula and measured values of the target strength of shelled bodies from Stanton et al. (this issue) are close to or consistent with observed area scattering strengths due to shell-covered seafloors published in other papers.This research was
supported by the U.S. Office of Naval Research Grant No.
N00014-95-1-0287
Optically Selected BL Lacertae Candidates from the Sloan Digital Sky Survey Data Release Seven
We present a sample of 723 optically selected BL Lac candidates from the SDSS
DR7 spectroscopic database encompassing 8250 deg^2 of sky; our sample
constitutes one of the largest uniform BL Lac samples yet derived. Each BL Lac
candidate has a high-quality SDSS spectrum from which we determine
spectroscopic redshifts for ~60% of the objects. Redshift lower limits are
estimated for the remaining objects utilizing the lack of host galaxy flux
contamination in their optical spectra; we find that objects lacking
spectroscopic redshifts are likely at systematically higher redshifts.
Approximately 80% of our BL Lac candidates match to a radio source in
FIRST/NVSS, and ~40% match to a ROSAT X-ray source. The homogeneous
multiwavelength coverage allows subdivision of the sample into 637 radio-loud
BL Lac candidates and 86 weak-featured radio-quiet objects. The radio-loud
objects broadly support the standard paradigm unifying BL Lac objects with
beamed radio galaxies. We propose that the majority of the radio-quiet objects
may be lower-redshift (z<2.2) analogs to high-redshift weak line quasars (i.e.,
AGN with unusually anemic broad emission line regions). These would constitute
the largest sample of such objects, being of similar size and complementary in
redshift to the samples of high-redshift weak line quasars previously
discovered by the SDSS. However, some fraction of the weak-featured radio-quiet
objects may instead populate a rare and extreme radio-weak tail of the much
larger radio-loud BL Lac population. Serendipitous discoveries of unusual white
dwarfs, high-redshift weak line quasars, and broad absorption line quasars with
extreme continuum dropoffs blueward of rest-frame 2800 Angstroms are also
briefly described.Comment: 24 pages, 14 figures, 8 tables. Accepted for publication in A
SDSS-IV MaNGA : star-formation-driven biconical outflows in the local universe
We present a sample of 48 nearby galaxies with central, biconical outflows identified by the Mapping Nearby Galaxies at APO survey. All considered galaxies have star-formation-driven biconical (SFB) central outflows, with no signs of an active galactic nucleus. We find that the SFB outflows require high central concentration of the star formation rate. This increases the gas velocity dispersion over the equilibrium limit and helps maintain the gas outflows. The central starbursts increase the metallicity, extinction, and the [α/Fe] ratio in the gas. A significant amount of young stellar population at the centers suggests that the SFBs are associated with the formation of young bulges in galaxies. More than 70% of SFB galaxies are group members or have companions with no prominent interaction, or show asymmetry of external isophotes. In 15% of SFB cases, stars and gas rotate in the opposite directions, which points at the gas infall from satellites as the primary reason for triggering the SFB phenomena
Violent quenching : Molecular Gas Blown to 1000 km s -1 during a Major Merger
Accepted for publication in ApJ LettersWe present Atacama Large Millimeter/submillimeter Array observations of a massive () compact ( pc) merger remnant at z = 0.66 that is driving a 1000 km s -1 outflow of cool gas, with no observational trace of an active galactic nucleus (AGN). We resolve molecular gas on scales of approximately 1-2 kpc, and our main finding is the discovery of a wing of blueshifted CO J(2 → 1) emission out to-1000 km s -1 relative to the stars. We argue that this is the molecular component of a multiphase outflow, expelled from the central starburst within the past 5 Myr through stellar feedback, although we cannot rule out previous AGN activity as a launching mechanism. If the latter is true, then this is an example of a relic multiphase AGN outflow. We estimate a molecular mass outflow rate of approximately 300 M o yr -1, or about one third of the 10 Myr-Averaged star formation rate. This system epitomizes the multiphase "blowout" episode following a dissipational major merger-a process that has violently quenched central star formation and supermassive black hole growth.Peer reviewedFinal Accepted Versio
Highly Polarized Optically-Selected BL Lacertae Objects
Observations of candidate BL Lacertae objects spectroscopically selected from
the Sloan Digital Sky Survey (SDSS) reveal a large fraction with high
polarization (P > 3%). This result confirms that synchrotron radiation makes an
important contribution to the observed optical continuum for most objects in
the sample. The SDSS sample can be divided into separate categories, with
objects of undetermined redshift generally having the highest optical
polarization. Polarization as high as 23% and the lack of spectral features
suggests that the synchrotron continuum completely dominates the spectra of
these sources. The mean polarization levels observed for objects having
measured redshifts is much lower, with the maximum observed polarization for
this group being ~10%. The lower polarizations of these objects are reminiscent
of the less spectacular polarization levels shown by BL Lac objects discovered
in X-ray surveys. We find no SDSS BL Lac candidates at z > 1 with P > 3%,
calling their classification as BL Lac objects into question. In addition, the
existence of radio-quiet BL Lac objects is not verified since none of 10
potentially radio-weak BL Lac candidates observed are highly polarized.
Regardless of whether the high-redshift and radio-weak objects are included in
this optical sample, the overall levels of polarization observed are
intermediate between those seen for X-ray and radio-selected BL Lac objects.Comment: 9 pages, 3 figures, 2 table
Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons
Although the functional neuroanatomy of the midbrain dopamine (mDA) system has been well characterized, the literature regarding its capacity to innervate the hippocampal formation has been inconsistent. The lack of expression of definitive markers for dopaminergic fibers, such as the dopamine transporter, in the hippocampus has complicated studies in this area. Here we have used immunohistochemical techniques to characterize the tyrosine hydroxylase expressing fiber network in the rat hippocampus, combined with retrograde tracing from the dentate gyrus to assess the capacity for afferent innervation by mDA neurons. The results indicate that virtually all tyrosine hydroxylase fibers throughout the hippocampus are of a noradrenergic phenotype, while the overlying cortex contains both dopaminergic and noradrenergic fiber networks. Furthermore, retrograde tracing from the dentate gyrus robustly labels tyrosine hydroxylase-immunoreactive noradrenergic neurons in the locus coeruleus but not mDA neurons
Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo
The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions
- …