35 research outputs found

    Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population

    Get PDF
    Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe

    Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm

    Get PDF
    BACKGROUND: Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm. METHODOLOGY/PRINCIPAL FINDINGS: Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm. CONCLUSIONS: The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.Alexander A. T. Johnson, Bianca Kyriacou, Damien L. Callahan, Lorraine Carruthers, James Stangoulis, Enzo Lombi and Mark Teste

    Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat

    Get PDF
    Wheat is an important dietary source of zinc (Zn) and other mineral elements in many countries. Dietary Zn deficiency is widespread, especially in developing countries, and breeding (genetic biofortification) through the HarvestPlus programme has recently started to deliver new wheat varieties to help alleviate this problem in South Asia. To better understand the potential of wheat to alleviate dietary Zn deficiency, this study aimed to characterise the baseline effects of genotype (G), site (E), and genotype by site interactions (GxE) on grain Zn concentration under a wide range of soil conditions in India. Field experiments were conducted on a diverse panel of 36 Indian-adapted wheat genotypes, grown on a range of soil types (pH range 4.5–9.5), in 2013–14 (five sites) and 2014–15 (six sites). Grain samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The mean grain Zn concentration of the genotypes ranged from 24.9–34.8 mg kg-1, averaged across site and year. Genotype and site effects were associated with 10% and 6% of the overall variation in grain Zn concentration, respectively. Whilst G x E interaction effects were evident across the panel, some genotypes had consistent rankings between sites and years. Grain Zn concentration correlated positively with grain concentrations of iron (Fe), sulphur (S), and eight other elements, but did not correlate negatively with grain yield, i.e. no yield dilution was observed. Despite a relatively small contribution of genotype to the overall variation in grain Zn concentration, due to experiments being conducted across many contrasting sites and two years, our data are consistent with reports that biofortifying wheat through breeding is likely to be effective at scale given that some genotypes performed consistently across diverse soil types. Notably, all soils in this study were probably Zn deficient and interactions between wheat genotypes and soil Zn availability/management (e.g. the use of Zn-containing fertilisers) need to be better-understood to improve Zn supply in food systems

    Effects of dietary fibre from the traditional Indonesian food, green cincau (Premna oblongifolia merr.) on preneoplastic lesions and short chain fatty acid production in an azoxymethane rat model of colon cancer

    No full text
    Green cincau (Premna oblongifolia Merr.) is a traditional food of Indonesia and provides a natural source of dietary fibre and antioxidants. This study evaluated the ability of green cincau, and other dietary fibres with or without the addition of anti-oxidant, epigallocatechin-3-gallate (EGCG), to prevent colorectal cancer in a 12 week azoxymethane (AOM) rat model. While all dietary treatments stimulated short chain fatty acid production (SCFA) in the digesta and faeces, no one treatment was able to significantly protect against aberrant crypt formation (ACF), when compared to the control diet. However, feeding green cincau leaves or extracts did not result in an increase in ACF compared to the control diet. Unexpectedly, when the dietary fibre source was pectin, 0.1% EGCG increased proliferative activity and liver lipid peroxidation when compared to the control diet containing cellulose. Examination of faecal microbial communities identified the presence of short chain acid producing bacteria, but a distinct community profile was not observed from any individual diet group. Overall, this research implies that combining dietary fibre with an antioxidant does not automatically equate to a beneficial response. Further work is required to investigate the health-promoting properties of green cincau

    Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat

    No full text
    Background and aims: Crop biofortification programs require fast, accurate and inexpensive methods of identifying nutrient dense genotypes. This study investigated energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn), iron (Fe) and selenium (Se) concentrations in whole grain wheat. Methods: Grain samples were obtained from existing biofortification programs. Reference Zn, Fe and Se concentrations were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) and/or inductively coupled plasma mass spectrometry (ICP-MS). One set of 25 samples was used to calibrate for Zn (19–60 mg kg–1) and Fe (26–41 mg kg–1), with 25 further samples used to calibrate for Se (2–31 mg kg–1 ). Calibrations were validated using an additional 40–50 wheat samples. Results: EDXRF limits of quantification (LOQ) were estimated as 7, 3 and 2 mg kg–1 for Zn, Fe, and Se, respectively. EDXRF results were highly correlated with ICP-OES or -MS values. Standard errors of EDXRF predictions were ±2.2 mg Zn kg–1, ±2.6 mg Fe kg–1, and ±1.5 mg Se kg–1. Conclusion: EDXRF offers a fast and economical method for the assessment of Zn, Fe and Se concentration in wheat biofortification programs
    corecore