278 research outputs found

    The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 ÎŒm Cluster Luminosity Functions

    Get PDF
    We present a catalog of 99 candidate clusters and groups of galaxies in the redshift range 0.1 1.5). Using the 3.6 ÎŒm LF as a proxy for stellar luminosity, we remove this component from the MIR (5.8 and 8.0 ÎŒm ) cluster LFs and measure the LF of dusty star formation/AGNs in clusters. We find that at z 0.4, an additional population of dusty starburst galaxies is required to properly model the 8.0 ÎŒm LFs. Comparison to field studies at similar redshifts shows a strong differential evolution in the field and cluster 8.0 ÎŒm LFs with redshift. At z ~ 0.65 8.0 ÎŒm -detected galaxies are more abundant in clusters compared to the field, but thereafter the number of 8.0 ÎŒm sources in clusters declines with decreasing redshift, and by z ~ 0.15, clusters are underdense relative to the field by a factor of ~5. The rapid differential evolution between the cluster and field LFs is qualitatively consistent with recent field galaxy studies that show that the star formation rates of galaxies in high-density environments are larger than those in low-density environments at higher redshift

    BAFFLES: Bayesian Ages for Field Lower-mass Stars

    Get PDF
    Funding: R.D. acknowledges support from the Fonds de Recherche du QuĂ©bec. Supported by NSF grants AST-1411868 (E.L.N., B.M.), and AST-1518332 (R.J.D.R.). Supported by NASA grants NNX14AJ80G (E.L.N., B.M.), NNX15AC89G and NNX15AD95G (B.M., R.J.D.R.), 80NSSC17K0535 (B.M., E.L.N., R.J.D.R), and NASA Hubble Fellowship grant HST-HF2-51405.001-A (I.C.).Age is a fundamental parameter of stars, yet in many cases, ages of individual stars are presented without robust estimates of the uncertainty. We have developed a Bayesian framework, BAFFLES, to produce the age posterior for a star from its calcium emission strength (log(Râ€ČHK)) or lithium abundance (Li EW) and B − V color. We empirically determine the likelihood functions for calcium and lithium as functions of age from literature measurements of stars in benchmark clusters with well-determined ages. We use a uniform prior on age, which reflects a uniform star formation rate. The age posteriors we derive for several test cases are consistent with literature ages found from other methods. BAFFLES represents a robust method to determine the age posterior probability distribution for any field star with 0.45 ≀ B − V ≀ 0.9 and a measurement of Râ€ČHK and/or 0.35 ≀ B − V ≀ 1.9 and measured Li EW. We compile colors, Râ€ČHK, and Li EW from over 2630 nearby field stars from the literature, and present the derived BAFFLES age posterior for each star.PostprintPeer reviewe

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. II. A Spectroscopic Catalog of Red Galaxies in Galaxy Clusters

    Full text link
    We present a spectroscopic catalog of (mostly) red galaxies in 24 galaxy clusters in the redshift range 0.17 < z < 0.92 obtained with the LRIS instrument on the Keck I telescope. Here we describe the observations and the galaxy spectra, including the discovery of three cD galaxies with LINER emission spectra, and the spectroscopic discovery of four new galaxy-galaxy lenses in cluster environments.Comment: Submitted to ApJ

    Star Formation and AGN Activity in Galaxy Clusters from z=1−2z=1-2: a Multi-wavelength Analysis Featuring HerschelHerschel/PACS

    Full text link
    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive (≳1014 M⊙\gtrsim10^{14}\,\rm{M_{\odot}}) galaxy clusters at 1<z<1.751<z<1.75. Using new, deep HerschelHerschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z≳1.4z\gtrsim1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5 r<0.5\,Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z∌1z\sim1. Enhanced SFRs are found in lower mass (10.1<log⁥M⋆/M⊙<10.810.1< \log \rm{M_{\star}}/\rm{M_{\odot}}<10.8) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from z=0.5−2z=0.5-2, finding an excess AGN fraction at z≳1z\gtrsim1, suggesting environmental triggering of AGN during this epoch. We argue that our results −- a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN −- are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.Comment: 26 pages, 14 figures, 6 tables with appendix, accepted for publication in the Astrophysical Journa

    The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z=1.457

    Get PDF
    We present new spectroscopic observations of the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9-1738 at z=1.457, obtained with the DEIMOS instrument at the W. M. Keck Observatory, and the FORS2 instrument on the ESO Very Large Telescope. Within the cluster virial radius, as estimated from the cluster X-ray properties, we increase the number of known spectroscopic cluster members to 17 objects, and calculate the line of sight velocity dispersion of the cluster to be 580+/-140 km/s. We find mild evidence that the velocity distribution of galaxies within the virial radius deviates from a single Gaussian. We show that the properties of J2215.9-1738 are inconsistent with self-similar evolution of local X-ray scaling relations, finding that the cluster is underluminous given its X-ray temperature, and that the intracluster medium contains ~2-3 times the kinetic energy per unit mass of the cluster galaxies. These results can perhaps be explained if the cluster is observed in the aftermath of an off-axis merger. Alternatively, heating of the intracluster medium through supernovae and/or Active Galactic Nuclei activity, as is required to explain the observed slope of the local X-ray luminosity-temperature relation, may be responsible.Comment: 13 pages, 6 figures, accepted for publication in Ap

    Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    Get PDF
    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L_FIR equal to or greater than 10^{12} L_sun) and 19 new LIGs (with L_FIR equal to or greater than 10^{11} L_sun). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K'. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines - four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.Comment: 29 pages, 8 figures, accepted for publication in A

    Giant Lya nebulae associated with high redshift radio galaxies

    Full text link
    We report deep Keck narrow-band Lya images of the luminous z > 3 radio galaxies 4C 41.17, 4C 60.07, and B2 0902+34. The images show giant, 100-200 kpc scale emission line nebulae, centered on these galaxies, which exhibit a wealth of morphological structure, including extended low surface brightness emission in the outer regions, radially directed filaments, cone-shaped structures and (indirect) evidence for extended Lya absorption. We discuss these features within a general scenario where the nebular gas cools gravitationally in large Cold Dark Matter (CDM) halos, forming stars and multiple stellar systems. Merging of these ``building'' blocks triggers large scale starbursts, forming the stellar bulges of massive radio galaxy hosts, and feeds super-massive black holes which produce the powerful radio jets and lobes. The radio sources, starburst superwinds and AGN radiation then disrupt the accretion process limiting galaxy and black hole growth, and imprint the observed filamentary and cone-shaped structures of the Lya nebulae.Comment: 36 Pages, including 8 Postscript figures. Accepted for publication in the Astrophysical Journa
    • 

    corecore