65 research outputs found

    Barred Galaxies in the Coma Cluster

    Full text link
    We use ACS data from the HST Treasury survey of the Coma cluster (z~0.02) to study the properties of barred galaxies in the Coma core, the densest environment in the nearby Universe. This study provides a complementary data point for studies of barred galaxies as a function of redshift and environment. From ~470 cluster members brighter than M_I = -11 mag, we select a sample of 46 disk galaxies (S0--Im) based on visual classification. The sample is dominated by S0s for which we find an optical bar fraction of 47+/-11% through ellipse fitting and visual inspection. Among the bars in the core of the Coma cluster, we do not find any very large (a_bar > 2 kpc) bars. Comparison to other studies reveals that while the optical bar fraction for S0s shows only a modest variation across low-to-intermediate density environments (field to intermediate-density clusters), it can be higher by up to a factor of ~2 in the very high-density environment of the rich Coma cluster core.Comment: Proceedings of the Bash symposium, to appear in the Astronomical Society of the Pacific Conference Series, eds. L. Stanford, L. Hao, Y. Mao, J. Gree

    The mammalian gene function resource: The International Knockout Mouse Consortium

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    Sensor networks or smart artifacts?:An exploration of organizational issues of an industrial health and safety monitoring system

    Get PDF
    Industrial health and safety is an important yet largely unexplored application area of ubiquitous computing. In this paper we investigate the relationship between technology and organization in the context of a concrete industrial health and safety system. The system is designed to reduce the number of incidents of "�vibration white finger"� (VWF) at construction sites and uses wireless sensor nodes for monitoring workers'� exposure to vibrations and testing of compliance with legal health and safety regulations. In particular we investigate the impact of this ubiquitous technology on the relationship between management and operatives, the formulation of health and safety rules and the risk perception and risk behavior of operatives. In addition, we contrast sensor-network inspired and smart artifact inspired compliance systems, and make the case that these technology models have a strong influence on the linkage between technology and organization
    corecore