786 research outputs found

    Adapting SAM for CDF

    Full text link
    The CDF and D0 experiments probe the high-energy frontier and as they do so have accumulated hundreds of Terabytes of data on the way to petabytes of data over the next two years. The experiments have made a commitment to use the developing Grid based on the SAM system to handle these data. The D0 SAM has been extended for use in CDF as common patterns of design emerged to meet the similar requirements of these experiments. The process by which the merger was achieved is explained with particular emphasis on lessons learned concerning the database design patterns plus realization of the use cases.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, pdf format, TUAT00

    Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007

    Get PDF
    One-sentence summary for table of contents: The full coding region nucleic acid sequence and serologic properties of the virus were identified

    Multiscale design of large and irregular metamaterials

    Get PDF
    This is the final version. Available on open access from the American Physical Society via the DOI in this recordData availability: All data and code created during this research are openly available from the corresponding authors, upon reasonable request.Next-generation microwave communications systems face several challenges, particularly from congested communications frequencies and complex propagation environments. We present, and experimentally test, a framework based on the coupled-dipole approximation for designing structures composed of a single simple emitter with a passive disordered scattering structure of rods that is optimized to provide a desired radiation pattern. Our numerical method provides an efficient way to model, and then design and test, otherwise inaccessibly large scattering systems.Engineering and Physical Sciences Research Council (EPSRC)Defence Science Technology Laboratory (DSTL)Leonardo Ltd UKRoyal Academy of Engineering (RAE)Royal Societ

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    A search for new particles in proton‐nucleus collisions at 400 GeV/c

    Full text link
    We report preliminary results from a search for new particles produced in proton‐nucleus collisions at 400 GeV/c. A double‐arm spectrometer is used to detect two‐body final states where each spectrometer arm has the capability of uniquely identifying Π±, K±, p, ?, μ±, and ϕ. The Jψ is measured in the μ+μ− mode.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87398/2/30_1.pd

    A Novel Frequency Analysis Method for Assessing Kir2.1 and Nav1.5 Currents

    Get PDF
    Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, Kir2.1, and the channel encoding the cardiac fast sodium current, Nav1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses
    corecore