634 research outputs found

    Numerical Evidence for Divergent Burnett Coefficients

    Full text link
    In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf 18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones fluid was presented in the previous paper. Now, sufficient resources have become available to address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case is known to have infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive relation) from mode coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones fluid undergoing colour flow, which indicates that this term is diverges in the thermodynamic limit.Comment: 12 pages, 9 figure

    Bound on the Dark Matter Density in the Solar System from Planetary Motions

    Get PDF
    High precision planet orbital data extracted from direct observation, spacecraft explorations and laser ranging techniques enable to put a strong constraint on the maximal dark matter density of a spherical halo centered around the Sun. The maximal density at Earth's location is of the order 10510^5 GeV/cm3{\rm GeV/cm^3} and shows only a mild dependence on the slope of the halo profile, taken between 0 and -2. This bound is somewhat better than that obtained from the perihelion precession limits.Comment: 7 pages, 1 figur

    The motion of a satellite of the moon

    Get PDF
    Analytical solution for motion of lunar orbital satellit

    Plant Functional Traits of Dominant Native and Invasive Species in Mediterranean-Climate Ecosystems

    Get PDF
    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global datasets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five Mediterranean-climate regions, which are drought-prone and increasingly threatened by human activities including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading Mediterranean-climate regions were more likely to be annual than perennial - three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource-use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation

    On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System

    Full text link
    The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati was primarily put forth to explain the observed acceleration of the expansion of the Universe without resorting to dark energy. One of the most intriguing features of such a model is that it also predicts small effects on the orbital motion of test particles which could be tested in such a way that local measurements at Solar System scales would allow to get information on the global properties of the Universe. Lue and Starkman derived a secular extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century, while Iorio showed that the mean longitude \lambda is affected by a secular precession of about 10^-3 arcseconds per century. Such effects depend only on the eccentricities e of the orbits via second-order terms: they are, instead, independent of their semimajor axes a. Up to now, the observational efforts focused on the dynamics of the inner planets of the Solar System whose orbits are the best known via radar ranging. Since the competing Newtonian and Einsteinian effects like the precessions due to the solar quadrupole mass moment J2, the gravitoelectric and gravitomagnetic part of the equations of motion reduce with increasing distances, it would be possible to argue that an analysis of the orbital dynamics of the outer planets of the Solar System, with particular emphasis on Saturn because of the ongoing Cassini mission with its precision ranging instrumentation, could be helpful in evidencing the predicted new features of motion. In this note we investigate this possibility in view of the latest results in the planetary ephemeris field. Unfortunately, the current level of accuracy rules out this appealing possibility and it appears unlikely that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17] added, reference [26] updated, caption of figures changed, small change in section 1.

    A Candidate Protoplanet in the Taurus Star Forming Region

    Full text link
    HST/NICMOS images of the class I protostar TMR-1 (IRAS04361+2547) reveal a faint companion with 10.0" = 1400 AU projected separation. The central protostar is itself resolved as a close binary with 0.31" = 42 AU separation, surrounded by circumstellar reflection nebulosity. A long narrow filament seems to connect the protobinary to the faint companion TMR-1C, suggesting a physical association. If the sources are physically related then we hypothesize that TMR-1C has been ejected by the protobinary. If TMR-1C has the same age and distance as the protobinary then current models indicate its flux is consistent with a young giant planet of several Jovian masses.Comment: 16 pages, 1 figure, Accepted by Astrophysical Journal Letters, Related information is available at http://www.extrasolar.co

    Solar system constraints on the Dvali-Gabadadze-Porrati braneworld theory of gravity

    Get PDF
    A number of proposals have been put forward to account for the observed accelerating expansion of the Universe through modifications of gravity. One specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a potentially observable anomaly in the solar system: all planets would exhibit a common anomalous precession, dw/dt, in excess of the prediction of General Relativity. We have used the Planetary Ephemeris Program (PEP) along with planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02 arcseconds per century on the presence of any such common precession. This sensitivity falls short of that needed to detect the estimated universal precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP scenario. We discuss the fact that ranging data between objects that orbit in a common plane cannot constrain the DGP scenario. It is only through the relative inclinations of the planetary orbital planes that solar system ranging data have sensitivity to the DGP-like effect of universal precession. In addition, we illustrate the importance of performing a numerical evaluation of the sensitivity of the data set and model to any perturbative precession.Comment: 9 pages, 2 figures, accepted for publication in Phys. Rev.

    Accurate free and forced rotational motions of rigid Venus

    Full text link
    % context :The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting since it can be compared with that of the Earth for which such a modelling has already been achieved at the milliarcsecond level % aims: We want to complete a previous study (Cottereau and Souchay, 2009), by determining at the milliarcsecond level the polhody, i.e. the torque-free motion of the axis of angular momentum of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. results :In a first part we have computed the polhody, i.e. the respective free rotational motion of the axis of angular momentum of Venus with respect to a body-fixed frame. We have shown that this motion is highly elliptical, with a very long period of 525 cy to be compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we have computed precisely the Oppolzer terms which allow to represent the motion in space of the third Venus figure axis with respect to Venus angular momentum axis, under the influence of the solar gravitational torque. We have determined the corresponding tables of coefficients of nutation of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We have shown that the coefficients of nutation for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration which revealed the indirect planetary effects.Comment: 14 pages, 11 figures, accepted for publication in section 11. Celestial mechanics and astrometry of Astronomy and Astrophysics (27/02/2010

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle

    Full text link
    In this paper we explicitly work out the secular perturbations induced on all the Keplerian orbital elements of a test body to order O(e^2) in the eccentricity e by the weak-field long-range modifications of the usual Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld model. The Gauss perturbative scheme is used. It turns out that the argument of pericentre and the mean anomaly are affected by secular rates which are independent of the semimajor axis of the orbit of the test particle. The first nonvaishing eccentricity-dependent corrections are of order O(e^2). For circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained. Some observational consequences are discussed for the Solar System planetary mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per century braneworld secular precession. According to recent data analysis over 92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds, while the braneworld effect over the same time span would be 1.159 milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per century systematic error due to the mismodelling in the Keplerian mean motion of Mars. A suitable linear combination of the mean longitudes of Mars and Venus may overcome this problem. The formal, 1-sigma obtainable observational accuracy would be \sim 7%. The systematic error due to the present-day uncertainties in the solar quadrupole mass moment, the Keplerian mean motions, the general relativistic Schwarzschild field and the asteroid ring would amount to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order corrections in eccentricity explicitly added. Typos corrected. References update
    • …
    corecore