242 research outputs found
Carbon Rich Extremely Metal Poor Stars: Signatures of Population-III AGB stars in Binary Systems
We use the Cambridge stellar evolution code STARS to model the evolution and
nucleosynthesis of zero-metallicity intermediate-mass stars. We investigate the
effect of duplicity on the nucleosynthesis output of these systems and the
potential abundances of the secondaries. The surfaces of zero-metallicity stars
are enriched in CNO elements after second dredge up. During binary interaction,
such as Roche lobe overflow or wind accretion, metals can be released from
these stars and the secondaries enriched in CNO isotopes. We investigate the
formation of the two most metal poor stars known, HE 0107-5240 and HE
1327-2326. The observed carbon and nitrogen abundances of HE 0107-5240 can be
reproduced by accretion of material from the companion-enhanced wind of a seven
solar star after second dredge-up, though oxygen and sodium are underproduced.
We speculate that HE 1327-2326, which is richer in nitrogen and strontium, may
similarly be formed by wind accretion in a later AGB phase after third
dredge-up.Comment: 16 pages, 1 figure, 7 tables, accepted by MNRA
The Puzzling Frequencies of CEMP and NEMP Stars
We present the results of binary population simulations of carbon- and
nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed
paucity of very nitrogen-rich stars puts strong constraints on possible
modifications of the initial mass function at low metallicity.Comment: 3 pages, contribution to "The Origin of the Elements Heavier than
Iron" in honor of the 70th birthday of Roberto Gallino, Torino, Italy,
September 200
Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements
The production of the elements heavier than iron via slow neutron captures
(the s process) is a main feature of the contribution of asymptotic giant
branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos.
However, our understanding of the main neutron source, the 13C(alpha,n)16O
reaction, is still incomplete. It is commonly assumed that in AGB stars mixing
beyond convective borders drives the formation of 13C pockets. However, there
is no agreement on the nature of such mixing and free parameters are present.
By means of a parametric model we investigate the impact of different mixing
functions on the final s-process abundances in low-mass AGB models. Typically,
changing the shape of the mixing function or the mass extent of the region
affected by the mixing produce the same results. Variations in the relative
abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are
generally within +/-0.2 dex, similar to the observational error bars. We
conclude that other stellar uncertainties - the effect of rotation and of
overshoot into the C-O core - play a more important role than the details of
the mixing function. The exception is at low metallicity, where the Pb
abundance is significantly affected. In relation to the composition observed in
stardust SiC grains from AGB stars, the models are relatively close to the data
only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly
Notices of the Royal Astronomical Societ
MONTAGE: AGB nucleosynthesis with full s-process calculations
We present MONTAGE, a post-processing nucleosynthesis code that combines a
traditional network for isotopes lighter than calcium with a rapid algorithm
for calculating the s-process nucleosynthesis of the heavier isotopes. The
separation of those parts of the network where only neutron-capture and
beta-decay reactions are significant provides a substantial advantage in
computational efficiency. We present the yields for a complete set of s-process
isotopes for a 3 Mo, Z = 0.02 stellar model, as a demonstration of the utility
of the approach. Future work will include a large grid of models suitable for
use in calculations of Galactic chemical evolution.Comment: 9 pages, 4 figures. Accepted by PAS
Population Synthesis of Binary Carbon-enhanced Metal-poor Stars
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one
fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well
understood. The most widely accepted formation scenario, invokes mass-transfer
of carbon-rich material from a thermally-pulsing asymptotic giant branch
(TPAGB) primary star to a less massive main-sequence companion which is seen
today. Recent studies explore the possibility that an initial mass function
biased toward intermediate-mass stars is required to reproduce the observed
CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also
implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars
which is not seen. We investigate whether the observed CEMP and NEMP to
extremely metal-poor (EMP) ratios can be explained without invoking a change in
the initial mass function.
We confirm earlier findings that with current detailed TPAGB models the large
observed CEMP fraction cannot be accounted for. We find that efficient third
dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at
least a partial explanation to the large observed CEMP fraction while remaining
consistent with the small observed NEMP fraction.Comment: 20 pages, 23 figures, accepted for publication in A&
The interaction of core-collapse supernova ejecta with a stellar companion
The progenitors of many core-collapse supernovae (CCSNe) are expected to be
in binary systems. By performing a series of three-dimensional hydrodynamical
simulations, we investigate how CCSN explosions affect their binary companion.
We find that the amount of removed stellar mass, the resulting impact velocity,
and the chemical contamination of the companion that results from the impact of
the SN ejecta, strongly increases with decreasing binary separation and
increasing explosion energy. Also, it is foud that the impact effects of CCSN
ejecta on the structure of main-sequence (MS) companions, and thus their long
term post-explosion evolution, is in general not be dramatic.Comment: 5 pages, 3 figures, poster contribution: IAU Symposium 346 "High Mass
X-ray Binaries: illuminating the passage from massive binaries to merging
compact objects", Vienna, Austria, 27-31 August 2018. arXiv admin note:
substantial text overlap with arXiv:1509.0363
Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis
The stellar population in the Galactic halo is characterised by a large
fraction of CEMP stars. Most CEMP stars are enriched in -elements (CEMP-
stars), and some of these are also enriched in -elements (CEMP- stars).
One formation scenario proposed for CEMP stars invokes wind mass transfer in
the past from a TP-AGB primary star to a less massive companion star which is
presently observed. We generate low-metallicity populations of binary stars to
reproduce the observed CEMP-star fraction. In addition, we aim to constrain our
wind mass-transfer model and investigate under which conditions our synthetic
populations reproduce observed abundance distributions. We compare the CEMP
fractions and the abundance distributions determined from our synthetic
populations with observations. Several physical parameters of the binary
stellar population of the halo are uncertain, e.g. the initial mass function,
the mass-ratio and orbital-period distributions, and the binary fraction. We
vary the assumptions in our model about these parameters, as well as the wind
mass-transfer process, and study the consequent variations of our synthetic
CEMP population. The CEMP fractions calculated in our synthetic populations
vary between 7% and 17%, a range consistent with the CEMP fractions among very
metal-poor stars recently derived from the SDSS/SEGUE data sample. The results
of our comparison between the modelled and observed abundance distributions are
different for CEMP- stars and for CEMP- stars. For the latter, our
simulations qualitatively reproduce the observed distributions of C, Na, Sr,
Ba, Eu, and Pb. Contrarily, for CEMP- stars our model cannot reproduce the
large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result
is consistent with previous studies, and suggests that CEMP- stars
experienced a different nucleosynthesis history to CEMP- stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and
Astrophysic
- …