192 research outputs found

    Propagation and deposition of stony debris flows at channel confluences

    Get PDF
    The fluid dynamics of stony debris flows generated in two small tributaries adjacent to each other and flowing into a main receiving channel was analyzed experimentally at a laboratory scale. The analysis on the propagation along the tributaries and deposition in the main channel provide information about sediment-water mobility, dangerous damming, and potential hazard. Debris flows were generated by releasing a preset water discharge over an erodible layer of saturated gravels material. As a consequence, the debris flow sediment concentration varied accordingly to the entrainment rate which, in turn, was strongly controlled by the tributary slope. The data collected by acoustic level sensors, pore fluid pressure transducers, and a load cell were used to characterize the evolution of bulk density and solid concentration of the sediment-water mixture. These two parameters were relevant to assess the stony debris flow mobility which contributes to determine the shape of sediment deposits in the main channel. The detailed bed topography surveys carried out in the main channel at the end of each experiment provided information on the morphology of these deposits and on the interplay of adjacent confluences. The influences of conflu- ence angle, tributary slopes, and triggering conditions have been investigated, for a total of 18 different configurations. Within the investigated range of parameters, the slope angle was the parameter that mainly influences the stony debris flow mobility while, for adjacent confluences, the degree of obstruction within the receiving channel was strongly influenced by the triggering scenario

    A comparative assessment of two different debris flow propagation approaches – blind simulations on a real debris flow event

    Get PDF
    Abstract. A detailed comparison between the performances of two different approaches to debris flow modelling was carried out. In particular, the results of a mono-phase Bingham model (FLO-2D) and that of a two-phase model (TRENT-2D) obtained from a blind test were compared. As a benchmark test the catastrophic event of 1 October 2009 which struck Sicily causing several fatalities and damage was chosen. The predicted temporal evolution of several parameters of the debris flow (such as flow depth and propagation velocity) was analysed in order to investigate the advantages and disadvantages of the two models in reproducing the global dynamics of the event. An analysis between the models' results with survey data have been carried out, not only for the determination of statistical indicators of prediction accuracy, but also for the application of the Receiver Operator Characteristic (ROC) approach. Provided that the proper rheological parameters and boundary conditions are assigned, both models seem capable of reproducing the inundation areas in a reasonably accurate way. However, the main differences in the application rely on the choice of such rheological parameters. Indeed, within the more user-friendly FLO-2D model the tuning of the parameters must be done empirically, with no evidence of the physics of the phenomena. On the other hand, for the TRENT-2D the parameters are physically based and can be estimated from the properties of the solid material, thus reproducing more reliable results. A second important difference between the two models is that in the first method the debris flow is treated as a homogeneous flow, in which the total mass is kept constant from its initiation in the upper part of the basin to the deposition in a debris fan. In contrast, the second approach is suited to reproduce the erosion and deposition processes and the displaced mass can be directly related to the rainfall event. Application of both models in a highly urbanized area reveals the limitation of numerical simulation which is inadequate in describing some disturbances of the flows that occurred during the alluvial event (e.g. the cars, the volume of debris within buildings etc.) which have a crucial influence on the evaluation of the maximum and final flow depths

    Physical modelling of debris flow deposits in contiguous confluences

    Get PDF
    Dam formation in river channel generated by single and multiple debris flow injections from affluent basins are investigated in through flume experiments. The aim of the research is to understand the morphodynamics that governs the dam formation. A set of 14 experiments considering both single and double debris flow injections have been carried out, investigating different configurations in terms of debris flow discharge, confluence angle and water discharge along the main channel. In all cases, the debris flow consisted of a mixture of gravel and water, that reproduces stony-debris flow conditions. Results from single confluence experiments are taken as reference for better understanding the interactions between the different deposits when considering adjacent debris flow injections. The collected data are used to test the critical indexes for dam formation probability proposed in literature

    Hierarchical TiN-Supported TsFDH Nanobiocatalyst for CO2 Reduction to Formate

    Get PDF
    The electrochemical reduction of CO2 to value-added products like formate represents a promising technology for the valorization of carbon dioxide. We propose a proof-of-concept bioelectrochemical system (BES) for the reduction of CO2 to formate. For the first time, our device employs a nanostructured titanium nitride (TiN) support for the immobilization of a formate dehydrogenase (FDH) enzyme. The hierarchical TiN nanostructured support exhibits high surface area and wide pore size distribution, achieving high catalytic loading, and is characterized by higher conductivity than other oxide-based supports employed for FDHs immobilization. We select the oxygen-tolerant FDH from Thiobacillus sp. KNK65MA (TsFDH) as enzymatic catalyst, which selectively reduces CO2 to formate. We identify an optimal TiN morphology for the enzyme immobilisation through enzymatic assay, reaching a catalyst loading of 59 μg cm−2 of specifically-adsorbed TsFDH and achieving a complete saturation of the anchoring sites available on the surface. We evaluate the electrochemical CO2 reduction performance of the TiN/TsFDH system, achieving a remarkable HCOO− Faradaic efficiency up to 76 %, a maximum formate yield of 44.1 μmol mg−1FDH h−1 and high stability. Our results show the technological feasibility of BES devices employing novel, nanostructured TiN-based supports, representing an important step in the optimization of these devices

    Hierarchical TiN-Supported TsFDH Nanobiocatalyst for CO2 Reduction to Formate

    Get PDF
    The electrochemical reduction of CO2 to value-added products like formate represents a promising technology for the valorization of carbon dioxide. We propose a proof-of-concept bioelectrochemical system (BES) for the reduction of CO2 to formate. For the first time, our device employs a nanostructured titanium nitride (TiN) support for the immobilization of a formate dehydrogenase (FDH) enzyme. The hierarchical TiN nanostructured support exhibits high surface area and wide pore size distribution, achieving high catalytic loading, and is characterized by higher conductivity than other oxide-based supports employed for FDHs immobilization. We select the oxygen-tolerant FDH from Thiobacillus sp. KNK65MA (TsFDH) as enzymatic catalyst, which selectively reduces CO2 to formate. We identify an optimal TiN morphology for the enzyme immobilisation through enzymatic assay, reaching a catalyst loading of 59 mu g cm(-2) of specifically-adsorbed TsFDH and achieving a complete saturation of the anchoring sites available on the surface. We evaluate the electrochemical CO2 reduction performance of the TiN/TsFDH system, achieving a remarkable HCOO- Faradaic efficiency up to 76 %, a maximum formate yield of 44.1 mu mol mg(FDH)(-1) h(-1) and high stability. Our results show the technological feasibility of BES devices employing novel, nanostructured TiN-based supports, representing an important step in the optimization of these devices

    Tackling TB in migrants arriving at Europe’s southern border

    Get PDF
    Over a quarter of the individuals diagnosed with tuberculosis [TB] in the European Union region are born outside of the area and the proportion has been increasing steadily. Italy is a low TB incidence country with over 50% of TB cases in the foreign-born population primarily due to the high numbers of migrants entering the country via land or sea. As a case study to evaluate the value of screening in newly arrived migrants, the EDETECT-TB project in Italy implemented and evaluated active TB screening in the migrant population at first reception centres to ensure early diagnosis to avoid further spread. Based on a cost-effectiveness analysis from a program provider perspective, a decision tree model allowed the assessment of the value for money of case finding by estimating the cost per case of active TB detected compared with the status quo of no screening. The analysis confirmed that early case detection is a cost-effective intervention in areas with migrants arriving from high TB risk settings. Targeted post-arrival early screening of high TB risk vulnerable new entrants to Italy has a potential role in reducing the spread of TB among migrants

    Wave overtopping at near-vertical seawalls: Influence of foreshore evolution during storms

    Get PDF
    This work presents the results of an investigation on how wave overtopping at a near-vertical seawall at the back of a sandy foreshore is influenced by sequences of erosive storms. The experiments were carried out in the Large Wave Flume (GWK) at Leibniz University, Hannover (Germany). The tested layout consisted of a near-vertical 10/1 seawall and a sandy foreshore with an initial 1/15 slope. Three sequences of idealised erosive storms were simulated. Within each storm both the incident wave conditions and still water level were varied in time to represent high and low tide conditions. Each sequence started from a 1/15 configuration and the beach was not restored in between storms. The measurements included waves, beach profile, wave overtopping volumes. The profile of the beach was measured after each sea state tested. Wave overtopping at each stage of the tested storms was significantly influenced by bed changes. This was linked to the measured evolution of the beach. Measurements showed that a barred profile developed quickly at the start of each sequence, and scour developed at the toe of the structure during high water level conditions, while accretion or partial backfilling developed during low water level conditions. Due to these processes, the position of a sea state in the tested sequence is shown to be an important factor in determining the wave overtopping volume. Remarkably, when a weaker idealised storm followed a more energetic one, nearly the same level of overtopping was recorded. This is explained by the foreshore erosion, leading to increased water depths and wave heights at the toe of the structure. This finding allows to quantify and to explain the variability of wave overtopping in storms following one another at intervals shorter than the recovery time of the foreshore

    App-based symptoms screening with Xpert MTB/RIF Ultra assay used for active tuberculosis detection in migrants at point of arrivals in Italy: The E-DETECT TB intervention analysis

    Get PDF
    BACKGROUND: From 2014 to 2017, the number of migrants who came to Italy via the Mediterranean route has reached an unprecedented level. The majority of refugees and migrants were rescued in the Central Mediterranean and disembarked at ports in the Sicily region. Rapid on-spot active TB screening intervention at the point of arrival will cover most migrants arriving in EU and by detecting TB prevalent cases will limit further transmission of the disease. // MATERIAL AND METHODS: Between November 2016 and December 2017 newly arrived migrants at point of arrivals in Sicily, were screened for active Tuberculosis using a smartphone application, followed in symptomatic individuals by fast molecular test, Xpert MTB/RIF Ultra, on collected sputum samples. // RESULTS: In the study period 3787 migrants received a medical evaluation. Eight hundred and ninety-one (23.5%) reported at least one protocol-defined Tuberculosis symptom. Fifteen (2.7%) were positive to at least one microbiological test revealing a post-entry screening prevalence rate of 396 per 100.000 individuals screened (95% CI: 2.22-6.53). In logistic regression analysis, those with cough and at least one other symptom had an increased probability of testing positive compared to persons with symptoms other than cough. Whole-genome-sequencing demonstrate two separate cases of transmission. // DISCUSSION: To our knowledge this study reports first-time results of an active TB case finding strategy based on on-spot symptom screening using a smartphone application, followed by fast molecular test on collected sputum samples. Our preliminary findings reveal a post-entry screening prevalence rate of 396 per 100.000 individuals screened (95% CI: 2.22-6.53)

    Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype.

    Get PDF
    Objective: To assess the prevalence and isotypes of anti-nodal/paranodal antibodies to nodal/paranodal proteins in a large chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) cohort, compare clinical features in seronegative vs seropositive patients, and gather evidence of their isotype-specific pathogenic role. Methods: Antibodies to neurofascin-155 (Nfasc155), neurofascin-140/186 (Nfasc140/186), contactin-1 (CNTN1), and contactin-associated protein 1 (Caspr1) were detected with ELISA and/or cell-based assay. Antibody pathogenicity was tested by immunohistochemistry on skin biopsy, intraneural injection, and cell aggregation assay. Results: Of 342 patients with CIDP, 19 (5.5%) had antibodies against Nfasc155 (n = 9), Nfasc140/186 and Nfasc155 (n = 1), CNTN1 (n = 3), and Caspr1 (n = 6). Antibodies were absent from healthy and disease controls, including neuropathies of different causes, and were mostly detected in patients with European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite CIDP (n = 18). Predominant antibody isotypes were immunoglobulin G (IgG)4 (n = 13), IgG3 (n = 2), IgG1 (n = 2), or undetectable (n = 2). IgG4 antibody-associated phenotypes included onset before 30 years, severe neuropathy, subacute onset, tremor, sensory ataxia, and poor response to intravenous immunoglobulin (IVIG). Immunosuppressive treatments, including rituximab, cyclophosphamide, and methotrexate, proved effective if started early in IVIG-resistant IgG4-seropositive cases. Five patients with an IgG1, IgG3, or undetectable isotype showed clinical features indistinguishable from seronegative patients, including good response to IVIG. IgG4 autoantibodies were associated with morphological changes at paranodes in patients' skin biopsies. We also provided preliminary evidence from a single patient about the pathogenicity of anti-Caspr1 IgG4, showing their ability to penetrate paranodal regions and disrupt the integrity of the Nfasc155/CNTN1/Caspr1 complex. Conclusions: Our findings confirm previous data on the tight clinico-serological correlation between antibodies to nodal/paranodal proteins and CIDP. Despite the low prevalence, testing for their presence and isotype could ultimately be part of the diagnostic workup in suspected inflammatory demyelinating neuropathy to improve diagnostic accuracy and guide treatment. Classification of evidence: This study provides Class III evidence that antibodies to nodal/paranodal proteins identify patients with CIDP (sensitivity 6%, specificity 100%)
    • …
    corecore