7,929 research outputs found

    Comment on "Dynamic range of nanotube- and nanowire-based electromechanical systems"

    Full text link
    We investigate the role of quantum effects (e.g. zero-point energy fluctuations) in the physics of nanotube- and nanowire-based electromechanical sensors as discussed in a recent article [Postma et al., Appl. Phys. Lett. 86, 223105 (2005)]. Employing the quantum fluctuation-dissipation theorem we find that these effects pose additional limits on the dynamic range of nanomechanical resonators.Comment: 1 page, 1 figure, Appl. Phys. Lett. (in print

    Uniformity of the pseudomagnetic field in strained graphene

    Full text link
    We present a study on the uniformity of the pseudomagnetic field in graphene as a function of the relative orientation between the graphene lattice and straining directions. For this, we strained a regular micron-sized graphene hexagon by deforming it symmetrically by displacing three of its edges. By simulations, we found that the pseudomagnetic field is strongest if the strain is applied perpendicular to the armchair direction of graphene. For a hexagon with a side length of 1 μ{\rm \mu}m, the pseudomagnetic field has a maximum of 1.2 T for an applied strain of 3.5% and it is uniform (variance <1< 1%) within a circle with a diameter of 520\sim 520 nm. This diameter is on the order of the typical diameter of the laser spot in a state-of-the-art confocal Raman spectroscopy setup, which suggests that observing the pseudomagnetic field in measurements of shifted magneto-phonon resonance is feasible.Comment: 7 pages, 5 figure

    Charge detection in a bilayer graphene quantum dot

    Full text link
    We show measurements on a bilayer graphene quantum dot with an integrated charge detector. The focus lies on enabling charge detection with a 30 nm wide bilayer graphene nanoribbon located approximately 35 nm next to a bilayer graphene quantum dot with an island diameter of about 100 nm. Local resonances in the nanoribbon can be successfully used to detect individual charging events in the dot even in regimes where the quantum dot Coulomb peaks cannot be measured by conventional techniques.Comment: 5 pages, 3 figure

    Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios

    Get PDF
    We present electron transport measurements on lithographically defined and etched graphene nanoconstrictions with different aspect ratios including different lengths (L) and widths (W). A roughly length-independent disorder induced effective energy gap can be observed around the charge neutrality point. This energy gap scales inversely with the width even in regimes where the length of the constriction is smaller than its width (L<W). In very short constrictions, we observe both resonances due to localized states or charged islands and an elevated overall conductance level (0.1-1e2/h), which is strongly length-dependent in the gap region. This makes very short graphene constrictions interesting for highly transparent graphene tunneling barriers.Comment: 4 pages, 4 figure

    Charge Detection in Graphene Quantum Dots

    Full text link
    We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon placed approx. 60 nm from the island. We show that resonances in the nanoribbon can be used to detect individual charging events on the quantum dot. The charging induced potential change on the quantum dot causes a step-like change of the current in the charge detector. The relative change of the current ranges from 10% up to 60% for detecting individual charging events.Comment: 4 pages, 3 figure

    Raman spectroscopy on mechanically exfoliated pristine graphene ribbons

    Full text link
    We present Raman spectroscopy measurements of non-etched graphene nanoribbons, with widths ranging from 15 to 160 nm, where the D-line intensity is strongly dependent on the polarization direction of the incident light. The extracted edge disorder correlation length is approximately one order of magnitude larger than on previously reported graphene ribbons fabricated by reactive ion etching techniques. This suggests a more regular crystallographic orientation of the non-etched graphene ribbons here presented. We further report on the ribbons width dependence of the line-width and frequency of the long-wavelength optical phonon mode (G-line) and the 2D-line of the studied graphene ribbons

    Imaging Localized States in Graphene Nanostructures

    Full text link
    Probing techniques with spatial resolution have the potential to lead to a better understanding of the microscopic physical processes and to novel routes for manipulating nanostructures. We present scanning-gate images of a graphene quantum dot which is coupled to source and drain via two constrictions. We image and locate conductance resonances of the quantum dot in the Coulomb-blockade regime as well as resonances of localized states in the constrictions in real space.Comment: 18 pages, 7 figure

    Spin States in Graphene Quantum Dots

    Full text link
    We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples
    corecore