We report measurements on a graphene quantum dot with an integrated graphene
charge detector. The quantum dot device consists of a graphene island (diameter
approx. 200 nm) connected to source and drain contacts via two narrow graphene
constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV
is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon
placed approx. 60 nm from the island. We show that resonances in the nanoribbon
can be used to detect individual charging events on the quantum dot. The
charging induced potential change on the quantum dot causes a step-like change
of the current in the charge detector. The relative change of the current
ranges from 10% up to 60% for detecting individual charging events.Comment: 4 pages, 3 figure