29 research outputs found

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    Neurophysiology of synaptic functioning in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is an inflammatory immune-mediate disorder of the central nervous system (CNS), primarily affecting the myelin sheath and followed by neurodegeneration. Synaptic alterations are emerging as critical determinants of early neurodegeneration in MS. Inflammation-induced alterations of synaptic transmission and plasticity have been investigated in vitro and also in human MS using transcranial magnetic stimulation (TMS) techniques. Specific inflammatory cytokines alter glutamatergic and GABAergic transmission, resulting in synaptic hyperexcitability. In both experimental autoimmune encephalomyelitis (EAE) and MS, excitotoxic damage and neurodegeneration are found even in the early phases of disease, conversely inflammation persists in the progressive phases. Inflammatory cytokines also affect synaptic plasticity, as both long-term potentiation (LTP) and long-term depression (LTD) are altered in EAE and in MS patients. In particular, inflammation profoundly subverts plasticity and influence both clinical recovery after a relapse and disease course. Regulation of neuronal activity by cytokines plays important roles in the neuro-immune crosstalk involved in inflammation-associated excitotoxic neuronal damage, and in the chance of developing compensatory plasticity. Innate and adaptive immunity interact with the CNS in MS, in line with the concept that cytokines and chemokines, in concert with neurotransmitters and neuropeptides, represent a major communication system in the CNS

    Familiarity for famous faces and names is not equally subtended by the right and left temporal poles. Evidence from an rTMS study

    No full text
    The aims of the present experiment was to investigate: (a) if transient disruption of neural activity in the right (RTP) or left temporal pole (LTP) can interfere with the development of a familiarity feeling to the presentation of faces/written names of famous/unknown people; and (b) if this interference specifically affects the familiarity for faces after inhibition of the RTP and for names after inhibition of the LTP. Twenty healthy volunteers took part in the study. Repetitive transcranial magnetic stimulation (rTMS) was administered online; it disrupted the neural activity of the right or left TP in concomitance with the presentation of each face and name whose familiarity had to be assessed. Furthermore, in a control group, each participant was submitted to a single experimental session in which rTMS was delivered to the vertex in association with the presentation of faces and written names. Since previous rTMS studies have shown that the temporary inactivation of the right and left TP influences the response latencies, but not the number of correct responses, in this study we took into account both the number of correct responses obtained in different experimental conditions and the corresponding response latencies. A three-way factorial ANOVA carried out on the Response Scores showed only a general effect of the Type of Stimuli, due to better performances on names than on faces. This greater familiarity of names is consistent with previous data reported in the literature. In the three-way factorial ANOVA carried out on the Latency Scores, post-hoc analyses showed an increased latency of responses to faces after right stimulation in Latency Total, Latency on Correct responses and Latency on Unfamiliar faces. None of these results were obtained in the control group. These data suggest that rTMS at the level of the RTP preferentially affects the development of familiarity feelings to the presentation of faces of famous people

    Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course

    Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain

    No full text
    Central neuropathic pain (CNP) is common and disabling among patients with multiple sclerosis (MS). The pathological mechanisms underlying CNP in MS are not well understood. We explored whether NGF is implicated in the pathogenesis of CNP in MS. We measured NGF concentration in the CSF of 73 patients affected by MS, 15 with and 58 without CNP and 14 controls. We found increased levels of NGF in the CSF of patients with CNP compared to patients without and to controls. This finding supports the hypothesis that NGF plays a role in MS related CNP

    IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis

    Get PDF
    Specific proinflammatory and anti-inflammatory molecules could represent useful cerebrospinal fluid (CSF) biomarkers to predict the clinical course of multiple sclerosis (MS). The proinflammatory molecule interleukin (IL)-6 has been investigated in the pathophysiology of MS and has been associated in previous smaller studies to increased disability and disease activity. Here, we wanted to further address IL-6 as a possible CSF biomarker of MS by investigating its detectability in a large cohort of 534 MS patients and in 103 individuals with other non-inflammatory neurological diseases. In these newly diagnosed patients, we also explored correlations between IL-6 detectability, MS phenotypes, and disease characteristics. We found that IL-6 was more frequently detectable in the CSF of MS patients compared with their control counterparts as significant differences emerged between patients with Clinically isolated syndrome (CIS), Relapsing-remitting (RR), and secondary progressive and primary progressive MS compared to non-inflammatory controls. IL-6 was equally present in the CSF of all MS phenotypes. In RR MS patients, IL-6 detectability was found to signal clinically and/or radiologically defined disease activity, among all other clinical characteristics. Our results add further evidence that CSF proinflammatory cytokines could be useful for the identification of those MS patients who are prone to increased disease activity. In particular, IL-6 could represent an interesting prognostic biomarker of MS, as also demonstrated in other diseases where CSF IL-6 was found to identify patients with worse disease severity

    Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis

    No full text
    Multiple Sclerosis (MS) is a demyelinating and neurodegenerative disease. Though a specific antigen has not been identified, it is widely accepted that MS is an autoimmune disorder characterized by myelin-directed immune attack. Pharmacological treatments for MS are based on immunomodulatory or immunosuppressant drugs, designed to attenuate or dampen the immune reaction, to improve neurological functions. Recently, rehabilitation has gained increasing attention in the scientific community dealing with MS. Engagement of people with MS in exercise programs has been associated with a number of functional improvements in mobility, balance, and motor coordination. Moreover, several studies indicate the effectiveness of exercise against fatigue and mood disorders that are frequently associated with the disease. However, whether exercise acts like an immunomodulatory therapy is still an unresolved question. A good tool to address this issue is provided by the study of the immunomodulatory effects of exercise in an animal model of MS, including the experimental autoimmune encephalomyelitis (EAE), the Theiler's virus induced-demyelinating disease (TMEV-IDD) and toxic-demyelinating models, cuprizone (CPZ), and lysolecithin (LPC). So far, despite the availability of different animal models, most of the pre-clinical data have been gained in EAE and to a lesser extent in CPZ and LPC. These studies have highlighted beneficial effects of exercise, suggesting the modulation of both the innate and the adaptive immune response in the peripheral blood as well as in the brain. In the present paper, starting from the biological differences among MS animal models in terms of immune system involvement, we revise the literature regarding the effects of exercise in EAE, CPZ, and LPC, and critically highlight the advantages of either model, including the so-far unexplored TMEV-IDD, to address the immune effects of exercise in MS
    corecore