16,607 research outputs found

    Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology

    Full text link
    Loop quantum cosmology tries to capture the main ideas of loop quantum gravity and to apply them to the Universe as a whole. Two main approaches within this framework have been considered to date for the study of cosmological perturbations: the dressed metric approach and the deformed algebra approach. They both have advantages and drawbacks. In this article, we accurately compare their predictions. In particular, we compute the associated primordial tensor power spectra. We show -- numerically and analytically -- that the large scale behavior is similar for both approaches and compatible with the usual prediction of general relativity. The small scale behavior is, the other way round, drastically different. Most importantly, we show that in a range of wavenumbers explicitly calculated, both approaches do agree on predictions that, in addition, differ from standard general relativity and do not depend on unknown parameters. These features of the power spectrum at intermediate scales might constitute a universal loop quantum cosmology prediction that can hopefully lead to observational tests and constraints. We also present a complete analytical study of the background evolution for the bouncing universe that can be used for other purposes.Comment: 15 pages, 7 figure

    The topological classification of one-dimensional symmetric quantum walks

    Full text link
    We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behaviour far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translationally invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 11 or −1-1 (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.Comment: 36 pages, 7 figure

    Effect of partially-screened nuclei on fast-electron dynamics

    Get PDF
    We analyze the dynamics of fast electrons in plasmas containing partially ionized impurity atoms, where the screening effect of bound electrons must be included. We derive analytical expressions for the deflection and slowing-down frequencies, and show that they are increased significantly compared to the results obtained with complete screening, already at sub-relativistic electron energies. Furthermore, we show that the modifications to the deflection and slowing down frequencies are of equal importance in describing the runaway current evolution. Our results greatly affect fast-electron dynamics and have important implications, e.g. for the efficacy of mitigation strategies for runaway electrons in tokamak devices, and energy loss during relativistic breakdown in atmospheric discharges.Comment: 6 pages, 3 figures, fixed minor typo

    The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Full text link
    We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signal exhibit asymmetries that are interpreted as perturbations of the wind. A systematic visibility decrease is observed across the Bracket Gamma. During the 2006-2007 period the Bracket Gamma and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN, we infer a mass-loss rate change of about 20% between the two epochs. We further find time variations in the differential visibilities and phases. The 2006-2007 period is characterized by noticeable variations of the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much more quiet with virtually no detectable variations in the dispersed visibilities but a strong S-shape signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures.Comment: Paper accepted in the A&A journa

    The 2006 hot phase of Romano's star (GR 290) in M33

    Get PDF
    Understanding the nature of the instabilities of LBVs is important to understand the late evolutionary stages of very massive stars. We investigate the long term, S Dor-type variability of the luminous blue variable GR290 (Romano's star) in M33, and its 2006 minimum phase. New spectroscopic and photometric data taken in November and December 2006 were employed in conjunction with already published data on GR290 to derive the physical structure of GR290 in different phases and the time scale of the variability. We find that by the end of 2006, GR 290 had reached the deepest visual minimum so far recorded. Its present spectrum resembles closely that of the Of/WN9 stars, and is the hottest so far recorded in this star (and in any LBV as well), while its visual brightness decreased by about 1.4 mag. This first spectroscopic record of GR290 during a minimum phase confirms that, similarly to AG Car and other LBVs, the star is subject to ample S Dor-type variations, being hotter at minimum, suggesting that the variations take place at constant bolometric luminosity.Comment: 4 figures, 1 table, accepted for publication in A&A Letter

    Effects of Microstructural Heterogeneity in Cement Excelsior Board

    Get PDF
    Heterogeneity in the properties and arrangement of constituents can have an important effect on a composite's properties. This paper evaluates the effects of variability in wood strand dimensions, mechanical properties, and orientation on the engineering properties of cement excelsior board. The finite element method is used to analyze a heterogeneous three-dimensional microstructure of strands, predicting elastic and strength properties. Results suggest that variability in strand mechanical properties can significantly lower composite tensile and compressive strengths, while composite stiffness is not affected. The model also predicts that relatively modest alignment of strands can lead to significant increases in composite strength and stiffness in the direction of alignment

    Multipole Expansion of Bremsstrahlung in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Using a multipole expansion of the radiated field generated by a classical electric current, we present a way to interprete the bremsstrahlung spectra of low energy heavy ion collisions. We perform the calculation explicitely for the system ^{12}C+ ^{12}C at 84AMeV and compare the result with the experimental data of E. Grosse et al. Using simple model assumptions for the electromagnetic source current we are able to describe the measured data in terms of coherent photon emission. In this context, the information contained in the measured data is discussed.Comment: LaTex, 4 Figure

    Complete homotopy invariants for translation invariant symmetric quantum walks on a chain

    Get PDF
    We provide a classification of translation invariant one-dimensional quantum walks with respect to continuous deformations preserving unitarity, locality, translation invariance, a gap condition, and some symmetry of the tenfold way. The classification largely matches the one recently obtained (arXiv: 1611.04439) for a similar setting leaving out translation invariance. However, the translation invariant case has some finer distinctions, because some walks may be connected only by breaking translation invariance along the way, retaining only invariance by an even number of sites. Similarly, if walks are considered equivalent when they differ only by adding a trivial walk, i.e., one that allows no jumps between cells, then the classification collapses also to the general one. The indices of the general classification can be computed in practice only for walks closely related to some translation invariant ones. We prove a completed collection of simple formulas in terms of winding numbers of band structures covering all symmetry types. Furthermore, we determine the strength of the locality conditions, and show that the continuity of the band structure, which is a minimal requirement for topological classifications in terms of winding numbers to make sense, implies the compactness of the commutator of the walk with a half-space projection, a condition which was also the basis of the general theory. In order to apply the theory to the joining of large but finite bulk pieces, one needs to determine the asymptotic behaviour of a stationary Schrodinger equation. We show exponential behaviour, and give a practical method for computing the decay constants
    • 

    corecore