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We analyze the dynamics of fast electrons in plasmas containing partially ionized impurity atoms,
where the screening effect of bound electrons must be included. We derive analytical expressions for the
deflection and slowing-down frequencies, and show that they are increased significantly compared to the
results obtained with complete screening, already at subrelativistic electron energies. Furthermore, we
show that the modifications to the deflection and slowing down frequencies are of equal importance in
describing the runaway current evolution. Our results greatly affect fast-electron dynamics and have
important implications, e.g., for the efficacy of mitigation strategies for runaway electrons in tokamak
devices, and energy loss during relativistic breakdown in atmospheric discharges.
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Introduction.—Fast electrons, having speeds well above
the thermal speed of the bulk plasma population, are
ubiquitous in space and laboratory plasmas. An important
process leading to such high-energy electrons is the runaway
mechanism. Runaway electrons can be produced in the
presence of an accelerating electric field if it exceeds the
critical value Ec ¼ nee3 lnΛ0=4πϵ20mec2 [1,2]. Situations
where runaway electrons are believed to be important include
solar flares [3], atmospheric discharges [4,5], laser-produced
plasmas [6], aswell as tokamakdisruptions [7]. In the latter, it
is important to understand thedynamics of runaway electrons
as they have the potential to seriously damage the tokamak
[8]. This will be especially problematic in larger, future
tokamak experiments, such as ITER [9]. There, runaway-
electron currents in excess of a megaampere are expected to
form if a disruption is notmitigated, and the potential damage
associated with such currents is larger than in any present
experiment [10]. Therefore, reliable methods to deal with
such currents are required [11,12].
One method to mitigate the detrimental effects of run-

away-electron beams is to dissipate them by injecting
heavy ions (impurities) such as argon or neon. The impurity
atoms become weakly ionized in the cold (few eV) post-
disruption plasma, and act to collisionally scatter particles
in the high-energy electron beam. Experiments have shown
that such injection of impurities with high atomic mass can
shift the energy distribution of the fast electrons towards
lower energies, to a much larger extent than predicted by
standard collisional theory [10,13]. The discrepancy
between measured and predicted dissipation increases with
atomic mass, even though the ions are usually only singly
ionized in the cold, post-disruption phase. This is an
indication that a fast electron is not simply deflected by
the Coulomb interaction with the net charge of the ion, but
also probes its internal electron structure, so that the nuclear
charge is not completely screened. The fast electrons can
therefore be expected to experience higher collision rates

against impurities, leading to a more efficient damping, in
agreement with experimental observations.
To quantify the importanceof this partial penetration of the

electron cloud of the ion, we compare the low-momentum-
transfer limit of complete screening (CS) of the nuclear
charge (i.e., the electron interacts only with the net ion
charge) to the high-energy limit of no screening (the electron
experiences the full nuclear charge), for both elastic and
inelastic collisions. For elastic collisions, where the ion can
be modeled as one entity [14], screening affects the inter-
action strength, which is proportional to the charge squared.
Compared to the limit of complete screening, the case of no
screening thus enhances the interaction strength by a factor
X2 ¼ ðZ=Z0Þ2, where Z0 is the ionization state and Z is the
charge number of the nucleus. Furthermore, inelastic colli-
sions (leading to excitation of the ion) can be treated as
electron-electron interactions [15], and thus increase the
effective electron density of the plasma (as experienced by
the fast electron). The rate of electron-electron collisions will
therefore be of orderX larger, as compared to the case where
only free electrons are included. Since the factor X is large
whenweakly ionizedhigh-atomic-number ions are present in
the plasma, the effect of reduced screening on the collisional
dynamics of fast particles can be significant for both elastic
and inelastic collisions.
To model the reduced-screening effect, a quantum-

mechanical model must be adopted. Because of the high
speed of the incoming electrons, the elastic collisions can
be treated using the Born approximation [16,17], which
requires knowledge of the electronic charge density of
the impurity ion. The effect of inelastic collisions can be
modeled using Bethe’s theory for the collisional stopping
power [18]. A classical description of elastic collisions,
combined with a stopping-power formula for inelastic
collisions [18], was used in a test-particle approach in
Ref. [19]. The results indicated that the effect of the
partially ionized impurities on the runaway growth rate
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can be substantial. However, without a quantum-mechanical
treatment of the elastic collisions and a solution of the kinetic
equation for the fast-electron distribution, the effect of
screening on fast-electron dynamics cannot be accurately
quantified. An extension to a quantum-mechanical treatment
of elastic collisions in theBorn approximationwas employed
in Refs. [4,5,16,17] using the Thomas-Fermi theory for the
electron charge density, which is limited to intermediate
distances from the nucleus, and does not capture the shell
structure of the ion [14]. Based on the results of Ref. [16], it
was pointed out in Ref. [20] that the runaway generation rate
is expected to be reduced. However, an accessible analytical
model of screening, that can be incorporated in kinetic
simulations of runaway-electron dynamics, has not been
derived. This is essential in order to combine all of the
important effects governing runaway dynamics into a trac-
table kinetic model, which would enable a quantification of
the effect of reduced screening on the runaway-electron
distribution.
In this Letter we present a generalized collision operator

which accounts for the screening effect of bound electrons
in collisions between fast electrons and partially ionized
impurities. We model elastic electron-ion collisions quan-
tum mechanically in the Born approximation, using density
functional theory (DFT) to obtain the electron-density
distribution of the impurity ions. This allows us to
determine the deflection frequency from first principles,
without the assumption of infinite nuclear charge used in
the Thomas-Fermi model. Furthermore, we employ stop-
ping-power theory to describe inelastic collisions with the
bound electrons, and derive an expression for the slowing-
down frequency. We demonstrate the effect of screening on
the electron distribution function via kinetic simulations.
Collision operator.—Small-angle collisions between spe-

cies a and b can be described by the Fokker-Planck operator
[21,22]:Cab ¼−∇kðfahΔpkiabÞþ 1

2
∇k∇lðfahΔpkΔpliabÞ,

where fa is the distribution function of particle species a,
p ¼ γv=c is the normalized momentum (with γ the Lorentz
factor), and Δpk the change in the kth component of the
particle momentum in a collision. The momentum averages
are given by hΔpk � � �Δpliab ¼

R
dp0fbðp0Þ R ðdσab=

dΩÞuΔpk � � �ΔpldΩ, where u is the relative velocity
between the particles, and dσab=dΩ is the differential cross
section.
When species b has a Maxwellian distribution, the

collision operator can be simplified to

Cab ¼ νabD LðfaÞ þ
1

p2

∂
∂p

�

p3

�

νabS fa þ
1

2
νab∥ p

∂fa
∂p

��

;

ð1Þ
where L represents scattering at constant energy [23],
and νabD , νabS , and νab∥ are the deflection, slowing-down, and
parallel-diffusion frequencies which are well known in the
limits of complete and no screening [23]. In this Letter, we
derive a generalization of these frequencies, taking into

account the effect of reduced screening in the elastic
collisions between electrons and ions, as well as inelastic
collisions between fast and bound electrons.
Elastic collisions.—Elastic collisions with ions contrib-

ute to pitch-angle scattering (deflection frequency) through
the scattering cross section, which we evaluate in the Born
approximation. The Born approximation is valid for β ¼
v=c ≫ Zα [14], where α ≈ 1=137 is the fine-structure
constant. In the cross section, we neglect ion recoil for
all ion species j (sinceme=mj ≪ 1). Furthermore, since we
are interested in the effect on superthermal particles with
v ≫ vTe ≫ vTj, where vTa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
is the thermal

speed, we consider collisions with a narrow ion distribu-
tion: fjðpÞ ¼ njδðpÞ. The cross section then takes the
following form [14,24]:

dσej
dΩ

¼ r20
4p4

�
cos2ðθ=2Þp2 þ 1

sin4ðθ=2Þ
�

jZj − FjðqÞj2; ð2Þ

where r0 is the classical electron radius, θ is the deflection
angle, and q ¼ 2p sinðθ=2Þ=α. The atomic form factor
FjðqÞ is the Fourier transform of the electron number
density ρe;j around an ion of species j:

FjðqÞ ¼
Z

ρe;jðrÞe−iq·r=a0dr; ð3Þ
where a0 ¼ ℏ=ðmecαÞ is the Bohr radius. In the limit of
small q, the form factor approaches the number of bound
electrons Ne;j ¼ Zj − Z0;j, giving a factor of Z2

0;j in the
cross section in Eq. (2), which corresponds to complete
screening. In the opposite limit of high momentum, the fast
oscillation of the integrand causes the form factor to vanish,
giving a factor of Z2

j , representing no screening.
When deriving the generalized collision operator using

Eqs. (2) and (3), we retain x ¼ sin ðθ=2Þ only to leading
order since it can be shown that small-angle collisions
dominate. We do, however, allow q ¼ 2xp=α to be
significant due to the large electron energies. Only the
term including νabD in Eq. (1) then persists:

νeiD ¼ νeiD;cs

�

1þ 1

Zeff

X

j

nj
ne

gjðpÞ
lnΛ

�

; ð4Þ

gjðpÞ ¼
Z

1

0

x−1f½Zj − FjðqÞ�2 − Z2
0;jgdx; ð5Þ

where νeiD;cs ¼ τ−1c Zeffγ=p3 is the completely screened
deflection frequency for superthermal particles, and τc ¼
ð4πnecr20 lnΛÞ−1 is the relativistic collision time. The
effective charge is defined as Zeff ¼

P
jnjZ

2
0;j=ne, where

ne represents the density of free electrons. The lower
integration limit in gjðpÞ (which is formally 1=Λ ≪ 1)
has been set to zero, since the integrand is finite. We model
the Coulomb logarithm according to lnΛee ¼ lnΛ0 þ
ð1=kÞ ln f1þ ½2ðγ − 1Þ=p2

Te�k=2g and lnΛei ¼ lnΛ0þð1=kÞ
ln ½1þð2p=pTeÞk�, where pTe is the thermal momentum.
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The parameter k ¼ 5 is chosen to give a smooth transition
between the low-energy formula lnΛ0 ¼ 14.9 −
0.5 lnðne½1020m−3�Þ þ lnðTe½keV�Þ [25] and the high-
energy formula from Refs. [26,27].
To calculate the form factor, the electron charge density

of the ion can be obtained via, e.g., DFT calculations; in
this work we have used the numerical tool EXCITING [28].
Our calculations show that the form factor can be well
described by a single-parameter model of the same form as
that obtained from the Thomas-Fermi model by Kirillov
et al. [16]: Fj;TF-DFTðqÞ ¼ Ne;j=½1þ ðqajÞ3=2�. This model,
which we denote the Thomas-Fermi–DFT (TF-DFT)
model, gives

gjðpÞ ¼
2

3
ðZ2

j − Z2
0;jÞ lnðy3=2j þ 1Þ − 2

3

N2
e;jy

3=2
j

y3=2j þ 1
; ð6Þ

where yj ¼ 2ajp=α. Note that the limit of complete screen-
ing (gjðpÞ → 0) is reached as p → 0 or for Zj ¼ Z0;j.
The parameter aj—the effective ion size in units of Bohr
radii—depends on the ion species and ionization degree, and
was determined by fitting gj in Eq. (6) to Eq. (5) evaluated
with the DFT output. For example, we obtain aAr ¼ 0.353,
aArþ ¼ 0.329, aAr2þ ¼ 0.306, aAr3þ ¼ 0.283, aAr4þ ¼ 0.260,
aAr5þ ¼ 0.238, aXeþ ¼ 0.238, and aBeþ ¼ 0.414.
The TF-DFT model agrees well with the prediction of

full DFT simulations. Figure 1(a) shows the energy-
dependent enhancement of the deflection frequency nor-
malized to the completely screened value, together with
the fit given in Eq. (6) for singly and doubly-ionized argon.
The deflection frequency is already almost 2 orders of
magnitude higher than the corresponding complete-screen-
ing value at electron energies of a few hundred keV (p ≈ 1).
Inelastic collisions.—The energy loss in electron-

electron collisions is described by the Bethe stopping-
power formula [15,29], which modifies the slowing-down
frequency νeeS describing collisional drag according to
νeeS ¼νeeS;cs½1þ

P
jðnjNe;j=nelnΛÞðlnhj−β2Þ�, where νeeS;cs¼

τ−1c γ2=p3 is the completely screened, superthermal slow-
ing-down frequency, hj ¼ p

ffiffiffiffiffiffiffiffiffiffi
γ − 1

p
=Ij, and Ij is the mean

excitation energy of the ion, normalized to the electron rest
energy. In this work, the numerical values of Ij for different
ion species were obtained from Ref. [30]. This model is
valid for γ − 1 ≫ Ij, corresponding to p≳ 0.03 for both
singly and doubly ionized argon. We provide here an
interpolation formula, from matching the above to the low-
energy asymptote corresponding to complete screening,
which we will refer to as the Bethe-like model:

νeeS ¼ νeeS;cs

�

1þ
X

j

njNe;j

ne lnΛ

�
1

k
ln ð1þ hkjÞ − β2

��

: ð7Þ

As in our model of lnΛ, we set k ¼ 5.
Figure 1(b) shows the enhancement of the slowing-down

frequency as a function of the electron energy. Note that
already around a few tens of keV, the enhancement using

the Bethe-like model (black) is an order of magnitude.
The transition between the Bethe equation and the
low-energy limit can be clearly seen at p ≈ 0.02. It is
instructive to compare these results to the Rosenbluth-
Putvinski (RP) rule of thumb that the effect of inelastic
collisions can be modeled by adding half of the bound
electrons to the free electron density [31]: νeeS;RP≈
νeeS;cs½1þ 1

2

P
jnjNe;j=ne�. This approximation [green line

in Fig. 1(b)] leads to a much greater enhancement than
the full formula up to p≃ 0.1. This region in momentum
space is important, since runaway generation is sensitive to
the dynamics at the critical momentum pc, which often is
in the region pc ≲ 0.1. The effect of inelastic collisions on
the electron-electron deflection frequency νeeD does not
follow from the stopping-power calculation, but is of order
X−1 smaller than νeiD and can be ignored for low ionization
degrees.
Numerical simulations.—The generalized collision oper-

ator presented here, consisting of Eqs. (1), (4), (6), and (7),
has been implemented in the numerical tool CODE [32–34],
which we use to solve the spatially homogeneous kinetic
equation for electrons in 2D momentum space, including
electric-field acceleration, collisions, and synchrotron-
radiation reaction losses.
We demonstrate the effects of reduced screening by

investigating the decay phase of the runaway evolution. In
the scenario considered, an electron distribution with an
energetic runaway tail (with average energy 7.8 MeV),
produced by a strong electric field, was used as the initial
state. During the simulation of the decay phase, the weak
electric field E ¼ 2Ec was used, which is well below the
effective critical field if reduced screening effects are taken
into account. To isolate the effect of reduced screening,

(a)

(b)

FIG. 1. (a) The deflection frequency and (b) the slowing-down
frequency as a function of the incoming-electron momentum,
normalized to the completely screened collision frequencies. The
models employed here (TF-DFT and Bethe-like) are plotted in
black, while the full DFT model and the approximate RP model
are shown in green. Note in (a) the lines overlay almost exactly. A
pure argon plasma [of either Arþ (dotted line) or Ar2þ (dash-
dotted line)], with T ¼ 10 eV and nAr ¼ 1020 m−3 was assumed,
giving lnΛþ

0 ¼ 9.9 and lnΛ2þ
0 ¼ 10.3.
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avalanche runaway generation (which is unimportant on the
simulation time scale [31]) was neglected, and bremsstrah-
lung (which can sometimes be an important energy-loss
mechanism [35,36]) does not affect the dynamics signifi-
cantly at the energies considered.
The effect of reduced screening on the electron distri-

bution is shown in Fig. 2(a) without and 2(b) with
synchrotron radiation, in a plasma with equal amounts
of singly ionized argon and hydrogen. As shown in the
figure, the enhanced deflection frequency (dash-dotted blue
line) acts to make the distribution function isotropic, as can
be seen by a comparison to the completely screened case
(dashed green line). Energy losses are induced when, in
addition, the slowing-down model of inelastic collisions
with bound electrons is included (solid black line). The
synergy with synchrotron radiation further enhances the
energy loss as shown in Fig. 2(b). The one-dimensional plot
in Fig. 2(c) offers a complementary view of the distribution
function; note that the maximum runaway energy is lower if
inelastic collisions are included, compared to only consid-
ering elastic collisions.
The changes to the distribution function presented in

Fig. 2 have significant implications for the decay of a
runaway-electron current, as shown in Fig. 3. Since the
decay time to a good approximation is proportional to

1=nAr for nAr ≳ nH (i.e., when νeiD ≫ νeiD;cs and ν
ee
S ≫ νeeS;cs),

the runaway-electron current is shown as a function of nArt.
With the full model of reduced screening, the current-decay
time is reduced by orders of magnitude compared to the
complete-screening model. The effect on the current is due
to the combination of the inelastic and the elastic collisions:
elastic collisions are most important when the distribution
is narrow in the pitch angle, while inelastic collisions will
dominate at later times, when the distribution is sufficiently
isotropic so that elastic scattering is less efficient. The RP
model (which was applied for momenta p > 10pTe) under-
estimates the decay rate resulting from inelastic collisions,
and shows a widely different current evolution compared to
the full model.
The bands in Fig. 3 represent an impurity density scan

over 2 orders of magnitude, showing only very slight
variation from the linear relationship between the decay
rate and nAr. Similarly, the current decay is insensitive to
the electric field as long as it is significantly lower than the
effective critical field. Although the relative importance of
elastic and inelastic collisions is influenced by the width of
the distribution function in the pitch angle, the overall effect
on the current decay is not strongly affected as long as the
initial distribution is forward beamed.
While the current decay shown in Fig. 3 is a robust result

when the electric field is constant, it neglects the inductive
coupling between the current, I, and the electric field in
a tokamak, which is allowed when I ≲ 250 kA [37].
The opposite, highly inductive limit leads to a current
decay rate proportional to the critical electric field [37]:
dI=dt ¼ 2πREeff

c =L, where L ∼ μ0R is the self-inductance
and R is the major radius. To calculate Eeff

c , which is
increased due to reduced screening compared to the
classical value Ec, we assume fast pitch-angle dynamics

(a)

(b)

(c)

FIG. 2. Contours of the distribution after 25 ms of collisional
deceleration from an initial beamlike state (dotted black line),
with and without screening effects. The limit of complete
screening for both νeiD and νeeS (dashed green line) is shown,
together with the TF-DFT model for νeiD but unmodified νeeS
(dash-dotted blue line), and with both the TF-DFT and Bethe-like
models (solid black line). The contours log10ðFÞ ¼ −16.5 and
−18 are shown, where F ¼ ð2πmeTÞ3=2fe=ne, with (a) B ¼ 0 T
and (b) B ¼ 4 T. A parallel cut through the distribution of (a) is
shown in (c). Parameters: T ¼ 10 eV, nH ¼ 1020 m−3 and Arþ
with density nAr ¼ nH, E ¼ 2Ec.

FIG. 3. Decay of the runaway-electron current as a function of
argon density and time. The full model, with both the TF-DFT
and Bethe-like contributions (solid black line), as well as the νeiD
(dash-dotted blue line) and νeeS (dotted red line) models sepa-
rately, are shown. These are compared to the RP model for
inelastic collisions (dotted green line) and the limit of complete
screening (dashed green line). The initial distribution of Fig. 2
was used, assuming a H plasma with nH ¼ 1020 m−3, and Arþ
impurities with nAr ¼ 10 nH; the light bands show the range
of results obtained by varying the argon density such that
nAr ∈ ½0.5 nH; 100 nH�. T ¼ 10 eV, E ¼ 2Ec, and B ¼ 2 T.
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following the procedure in Refs. [5,38]. For a H plasma
with up to triply ionized Ar impurities and densities in
the range nAr ≳ 0.1nH, and neglecting synchrotron losses
(B½T�2 ≲ nAr½1018m−3�), we obtain

Eeff
c

Ec
≈ 1þ 1

lnΛ0

�

7 − ln
ffiffiffiffiffiffiffiffi
TeV

p
þ 240

nAr;tot
ne

�

: ð8Þ

This large enhancement of the critical electric field has
significant contributions from elastic and inelastic colli-
sions, implying that both effects are important for the
runaway dynamics regardless of the inductance.
Conclusions.—In this Letter, we give convenient ana-

lytical expressions for the effect of reduced screening on
the collisional deflection and slowing-down frequencies,
derived from first principles. The model is formally correct
where the Born approximation is valid (v=c ≫ Zα), but is
applicable for all electron energies due to a matching to the
completely screened low-energy limit. For the first time, we
investigate the electron dynamics using kinetic simulations,
and find that the reduced-screening effect of bound
electrons has a large impact on the distribution function
of runaway electrons. The enhancement of both collisional
drag and pitch-angle scattering lead to significant energy
loss, the latter due to the increased synchrotron radiation.
We provide a formula for the effective critical field—the
threshold for runaway generation—which can be used to
predict the runaway-current decay time in tokamaks. Our
results indicate that runaway beams will be strongly
damped even in the presence of weakly ionized impurities,
in agreement with experiments [10]. Given the impact of
collisions with screened nuclei on the dynamics of runaway
electrons, the effects detailed here should be considered
in all situations where fast electrons interact with partially
ionized impurities, e.g., lightning discharges, tokamak
disruptions, and laser-plasma interaction.
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