3,833 research outputs found

    Modeling the Effect of Out-of-Plane Fiber Orientation in Lumber Specimens

    Get PDF
    A method is presented to account for the effect of three-dimensional fiber orientations near knots in a two-dimensional lumber tensile strength prediction model. Data we have collected show that grain angles dive from 15 to 90 degrees out of the wide face plane of flat-grained lumber within a region of about one knot radius from the visual edge of a knot. The diving nature of the grain angles is accounted for in a two-dimensional model, called GASPP+, by transforming a three-dimensional material compliance matrix, and extracting the appropriate coefficients for use in a two-dimensional compliance matrix. Failure criteria are modified to reflect the decreased strength associated with nonzero dive angles. These modifications led to accurate tensile behavior predictions, as evidenced by load-displacement plots and ultimate load measurements of lumber specimens. It is shown that consideration of dive angles is important in predicting the tensile strength and failure mode of thin lumber specimens. Lumber specimen thickness and the manner of loading influence the magnitude of the dive effect on strength

    Effects of Microstructural Heterogeneity in Cement Excelsior Board

    Get PDF
    Heterogeneity in the properties and arrangement of constituents can have an important effect on a composite's properties. This paper evaluates the effects of variability in wood strand dimensions, mechanical properties, and orientation on the engineering properties of cement excelsior board. The finite element method is used to analyze a heterogeneous three-dimensional microstructure of strands, predicting elastic and strength properties. Results suggest that variability in strand mechanical properties can significantly lower composite tensile and compressive strengths, while composite stiffness is not affected. The model also predicts that relatively modest alignment of strands can lead to significant increases in composite strength and stiffness in the direction of alignment

    Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS)

    Get PDF
    The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey

    Random fiber networks and special orthotropic elasticity of paper

    Get PDF
    "April 1999.""Submitted to Symposium on Mechanics of Cellulosic Materials ASME Mechanics and Materials Division Summer Meeting, Blacksburg, VA, June 1999.

    A Spectroscopic Study of Mass Outflows in the Interacting Binary RY Scuti

    Full text link
    The massive interacting binary RY Scuti is an important representative of an active mass-transferring system that is changing before our eyes and which may be an example of the formation of a Wolf-Rayet star through tidal stripping. Utilizing new and previously published spectra, we present examples of how a number of illustrative absorption and emission features vary during the binary orbit. We identify spectral features associated with each component, calculate a new, double-lined spectroscopic binary orbit, and find masses of 7.1 +/- 1.2 M_sun for the bright supergiant and 30.0 +/- 2.1 M_sun for the hidden massive companion. Through tomographic reconstruction of the component spectra from the composite spectra, we confirm the O9.7 Ibpe spectral class of the bright supergiant and discover a B0.5 I spectrum associated with the hidden massive companion; however, we suggest that the latter is actually the spectrum of the photosphere of the accretion torus immediately surrounding the massive companion. We describe the complex nature of the mass loss flows from the system in the context of recent hydrodynamical models for beta Lyr, leading us to conclude RY Scuti has matter leaving the system in two ways: 1) a bipolar outflow from winds generated by the hidden massive companion, and 2) mass from the bright O9.7 Ibpe supergiant flowing from the region near the L2 point to fill out a large, dense circumbinary disk. This circumbinary disk (radius ~ 1 AU) may feed the surrounding double-toroidal nebula (radius ~ 2000 AU).Comment: 41 pages with 7 tables and 11 figures, accepted to Ap

    Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Get PDF
    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p < 0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p < 0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p < 0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use

    Ideal Multipole Ion Traps from Planar Ring Electrodes

    Full text link
    We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. We illustrate the desirable properties of the traps by considering a few simple cases of confined ions. We predict that mm-scale surface traps may have trap depths as high as tens of electron volts, or micromotion amplitudes in a 2-D ion crystal as low as tens of nanometers, when parameters of a magnitude common in the field are chosen. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. In addition, ions with very high charge-to-mass ratios may be confined in the trap, and species of very different charge-to-mass ratios may be simultaneously confined. Applications of these traps include quantum information science, frequency metrology, and cold ion-atom collisions.Comment: Section on trapping of a single ion added, two figures added, one formula corrected, otherwise minor change

    A novel sub-seabed CO\u3csub\u3e2\u3c/sub\u3e release experiment informing monitoring and impact assessment for geological carbon storage

    Get PDF
    © 2014 The Authors. Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future

    Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

    Get PDF
    OBJECTIVE: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MΦs). Broadly speaking, MΦs dependent on glucose are pro-inflammatory, classically activated MΦs (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MΦs that primarily metabolize fatty acids are alternatively activated MΦs (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum in vivo dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct MΦ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis. METHODS: Bone marrow derived MΦs (BMDMs) from Fatp1 (-/-) and Fatp1 (+/+) mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 (Fatp1 (B-/-)) and controls Fatp1 (B+/+). Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 MΦ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. RESULTS: Fatp1 is downregulated with pro-inflammatory stimulation of MΦs. Fatp1 (-/-) BMDMs and FATP1-OE RAW 264.7 MΦs demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. Fatp1 (B-/-) chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed Fatp1 (B+/+) controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of Fatp1. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation in vitro. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in MΦs and modulated lipid mediator metabolism in MΦs. CONCLUSION: Our findings provide evidence that FATP1 is a novel regulator of MΦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1 (B-/-) mice. In contrast, gain of FATP1 activity in MΦs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated
    • …
    corecore