4,172 research outputs found

    How the Current Economy Will Affect Generation Z\u27s Ability to Retire in The Future

    Get PDF
    As Gen Z is moving into the workforce, it is becoming more evident that they are going to have a tough time being able to retire. Generation Z, born from 1995 to 2008 is one of the youngest Generations that has seen the most financial strife in their developing years, than any other generation. Even so, this generation has seen a lot of financial struggles they will continue to see them into the future. This study looks at a variety of different factors to help determine the severity of retirement for Generation Z. Some factors that will be looked at are things like government intervention, housing, wealth versus debt, similarities to the great depression as well as predictive models and theories. Looking at the context of these factors shows how Gen Z will either prosper or be hindered in their progression of wealth and financial freedom. This study will also analyze survey results conducted to see what Gen Z’s initial ideas of retirement are, and their outlook on their future. From the data it shows that Gen Z has a favorable outlook on today’s economy but a mixed when it comes to retirement

    Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1029/2019jd032346.The MONterey Aerosol Research Campaign (MONARC) in May–June 2019 featured 14 repeated identical flights off the California coast over the open ocean at the same time each flight day. The objective of this study is to use MONARC data along with machine learning analysis to evaluate relationships between both supermicrometer sea salt aerosol number (N>1) and volume (V>1) concentrations and wind speed, wind direction, sea surface temperature (SST), ambient temperature (Tamb), turbulent kinetic energy (TKE), relative humidity (RH), marine boundary layer (MBL) depth, and drizzle rate. Selected findings from this study include the following: (i) Near surface (1 and V>1 concentration ranges were 0.1–4.6 cm?3 and 0.3–28.2 ?m3 cm ?3, respectively; (ii) four meteorological regimes were identified during MONARC with each resulting in different N>1 and V>1 concentrations and also varying horizontal and vertical profiles; (iii) the relative predictive strength of the MBL properties varies depending on predicting N>1 or V>1, with MBL depth being more highly ranked for predicting N>1 and with TKE being higher for predicting V>1; (iv) MBL depths >400 m (1 and V>1 concentrations; (v) enhanced drizzle rates coincide with reduced N>1 and V>1 concentrations; (vi) N>1 and V>1 concentrations exhibit an overall negative relationship with SST and RH and an overall positive relationship with Tamb; and (vii) wind speed and direction were relatively weak predictors of N>1 and V>1.This work was funded by Office of Naval Research grant N00014-16-1-2567 and National Aeronautics and Space Administration (NASA) grant 80NSSC19K0442, the latter of which is in support of the ACTIVATE Earth Venture Suborbital-3 (EVS-3) investigation, which is funded by NASA’s Earth Science Division and managed through the Earth System Science Pathfinder Program Office.This work was funded by Office of Naval Research grant N00014-16-1-2567 and National Aeronautics and Space Administration (NASA) grant 80NSSC19K0442, the latter of which is in support of the ACTIVATE Earth Venture Suborbital-3 (EVS-3) investigation, which is funded by NASA’s Earth Science Division and managed through the Earth System Science Pathfinder Program Office

    Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications

    Get PDF
    Full-field optical coherence microscopy (FFOCM) is a high-resolution interferometric technique that is particularly attractive for biomedical imaging. Here we show that combining it with structured illumination fluorescence microscopy on one platform can increase its versatility since it enables co-localized registration of optically sectioned reflectance and fluorescence images. To demonstrate the potential of this dual modality, a fixed and labeled mouse retina was imaged. Results showed that both techniques can provide complementary information and therefore the system could potentially be useful for biomedical imaging applications

    Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder

    Get PDF
    Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder

    Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines

    Get PDF
    A 16-month (July 2018–October 2019) dataset of size-resolved aerosol composition is used to examine the sources and characteristics of five organic acids (oxalate, succinate, adipate, maleate, phthalate) and methanesulfonate (MSA) in Metro Manila, Philippines. As one of the most polluted megacities globally, Metro Manila offers a view of how diverse sources and meteorology impact the relative amounts and size distributions of these species. A total of 66 sample sets were collected with a Micro-Orifice Uniform Deposit Impactor (MOUDI), of which 54 sets were analyzed for composition. Organic acids and MSA surprisingly were less abundant than in other global regions that are also densely populated. The combined species accounted for an average of 0.80 ± 0.66 % of total gravimetric mass between 0.056 and 18 µm, still leaving 33.74 % of mass unaccounted for after considering black carbon and water-soluble ions and elements. The unresolved mass is suggested to consist of non-water-soluble metals as well as both water-soluble and non-water-soluble organics. Oxalate was approximately an order of magnitude more abundant than the other five species (149 ± 94 ng m−3 versus others being \u3c 10 ng m−3) across the 0.056–18 µm size range. Both positive matrix factorization (PMF) and correlation analysis are conducted with tracer species to investigate the possible sources of organic acids and MSA. Enhanced biomass burning influence in the 2018 southwest monsoon resulted in especially high levels of submicrometer succinate, MSA, oxalate, and phthalate. Peculiarly, MSA had negligible contributions from marine sources but instead was linked to biomass burning and combustion. Enhanced precipitation during the two monsoon seasons (8 June–4 October 2018 and 14 June–7 October 2019) coincided with a stronger influence from local emissions rather than long-range transport, leading to notable concentration enhancements in both the sub- and supermicrometer ranges for some species (e.g., maleate and phthalate). While secondary formation via gas-to-particle conversion is consistent with submicrometer peaks for the organic acids and MSA, several species (i.e., phthalate, adipate, succinate, oxalate) exhibited a prominent peak in the coarse mode, largely owing to their association with crustal emissions (i.e., more alkaline aerosol type) rather than sea salt. Oxalate\u27s strong association with sulfate in the submicrometer mode supports an aqueous-phase formation pathway for the study region. However, high concentrations during periods of low rain and high solar radiation suggest photo-oxidation is an important formation pathway

    Particulate Oxalate-to-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

    Get PDF
    Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 – 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing

    Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

    Get PDF
    Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154–0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing
    • …
    corecore