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Abstract

The MONterey Aerosol Research Campaign (MONARC) in May–June 2019 featured 14 repeated 

identical flights off the California coast over the open ocean at the same time each flight day. The 

objective of this study is to use MONARC data along with machine learning analysis to evaluate 

relationships between both supermicrometer sea salt aerosol number (N>1) and volume (V>1) 

concentrations and wind speed, wind direction, sea surface temperature (SST), ambient 

temperature (Tamb), turbulent kinetic energy (TKE), relative humidity (RH), marine boundary 

layer (MBL) depth, and drizzle rate. Selected findings from this study include the following: (i) 

Near surface (<60 m) N>1 and V>1 concentration ranges were 0.1–4.6 cm−3 and 0.3–28.2 μm3 cm
−3, respectively; (ii) four meteorological regimes were identified during MONARC with each 

resulting in different N>1 and V>1 concentrations and also varying horizontal and vertical profiles; 

(iii) the relative predictive strength of the MBL properties varies depending on predicting N>1 or 

V>1, with MBL depth being more highly ranked for predicting N>1 and with TKE being higher for 
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predicting V>1; (iv) MBL depths >400 m (<200 m) often correspond to lower (higher) N>1 and 

V>1 concentrations; (v) enhanced drizzle rates coincide with reduced N>1 and V>1 concentrations; 

(vi) N>1 and V>1 concentrations exhibit an overall negative relationship with SST and RH and an 

overall positive relationship with Tamb; and (vii) wind speed and direction were relatively weak 

predictors of N>1 and V>1.

1. Introduction

The marine boundary layer (MBL) contains a diverse population of supermicrometer 

(particle diameter [Dp] > 1 μm) aerosol types, from primary biological particles and sea salt 

to entrained continental particle types such as soil dust and ash (Kelly et al., 2007; Radke et 

al., 1988) and potentially even ship exhaust (Sorooshian et al., 2015). Of great importance 

are sea salt aerosol (SSA) particles emitted from the surface of the ocean, which have been 

linked to the largest mass emission flux of all aerosol types (Andreae & Rosenfeld, 2008). 

SSA particles significantly impact the earth’s energy budget (Collins et al., 2000; Fei et al., 

2019; Haywood et al., 1999; Murphy et al., 1998; Partanen et al., 2014; Takemura et al., 

2000), interact with clouds (Beard & Ochs, 1993; Dadashazar et al., 2017; Dong et al., 2015; 

Feingold et al., 1999; Johnson, 1982; Jung et al., 2015; Woodcock, 1952), and both drive 

geochemical cycles (Boyce, 1954; Keene et al., 2017; Monahan, 1968) and participate in 

chemical reactions with gases that can liberate species such as chloride and bromide (Braun 

et al., 2017; Graedel & Keene, 1995; Haskins et al., 2019; Skartveit, 1982; Zhou et al., 

2005). The inability to accurately simulate the horizontal and vertical distribution of SSA 

particles limits the ability to forecast their impacts in the MBL such as on cloud properties 

and radiative transfer (Fei et al., 2019).

There are significant differences in results from general circulation models (GCMs) for the 

life cycle of SSA (e.g., emissions, transport, and deposition), with model diversity reaching 

up to 199% for SSA emissions (Textor et al., 2006). Keene et al. (2017) provide an 

especially comprehensive summary of the confounders of SSA production at the ocean-air 

interface, which impact the concentrations of these particles in the MBL, the latter of which 

is the focus of this study. It is generally agreed that SSA particles are injected into the 

atmosphere by bursting of bubbles at the ocean surface and then transported by surface-level 

winds (Andreas, 1998). However, only a fraction of the near surface SSA mass 

concentration in the MBL can be explained by wind speed alone (Hanley et al., 2010; Reid 

et al., 2001). Various aspects of SSA particles (e.g., horizontal and vertical profiles and 

fluxes) in the MBL have also been noted to be influenced by sea surface temperature (SST) 

(Jaeglé et al., 2011; Salter et al., 2015), MBL stability (Monahan et al., 1986; Stramska & 

Petelski, 2003), wave kinematics (Lenain & Melville, 2017; Zhao & Toba, 2001), ocean 

salinity (Sofiev et al., 2011; Zábori et al., 2012), drizzle rate (Dana & Hales, 1976; Skartveit, 

1982), MBL depth (Lewis & Schwartz, 2004), and the synoptic scale air path (i.e., fetch) 

(Wu, 1975). The degree to which any of the above conditions influence atmospheric SSA 

fluxes and number concentration varies between independent studies (Barthel et al., 2019; 

Veron, 2015; Veron et al., 2012).

Schlosser et al. Page 2

J Geophys Res Atmos. Author manuscript; available in PMC 2020 November 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



While dry SSA particle diameters range from tens of nanometers to greater than 100 μm 

(Andreae & Rosenfeld, 2008; Keene et al., 2007; Lewis & Schwartz, 2004; Mårtensson et 

al., 2003), supermicrometer SSA (hereafter referred to as SM-SSA) particles are of special 

interest in this study as they can account for ~94% of the global atmospheric SSA mass 

burden and ~61% of the global aerosol optical depth (AOD) burden (Fei et al., 2019). 

Furthermore, the impacts of these larger particles extend to clouds since they are sufficiently 

large to serve as giant cloud condensation nuclei (GCCN) (Feingold et al., 1999; Johnson, 

1982; Kogan et al., 2012). In certain conditions associated with the amount of cloud liquid 

water and background pollution levels (Cheng et al., 2009; Dagan et al., 2015; Feingold et 

al., 1999; Teller & Levin, 2006), GCCN can broaden cloud droplet size distributions, leading 

to larger droplets and faster onset of warm drizzle (L’Ecuyer et al., 2009). Airborne 

measurements have confirmed that the presence of GCCN, even at very small concentrations 

(~10−4 to 10−2 cm−3), can significantly enhance drizzle rate in marine stratocumulus (Sc) 

clouds (Jung et al., 2015). The very largest sea spray droplets include spume droplets that 

have diameters generally exceeding 40 μm (Veron et al., 2012). These droplets play a 

significant role in exchanging momentum with the wind and are important for air-sea heat 

fluxes (Andreas, 1992). Spume drops are produced when water is removed off of wave crests 

at higher wind speeds (>7–11 m s−1) (Andreas, 1995; Veron, 2015).

There have been only a few airborne studies that have directly measured vertical and 

horizontal distributions of SM-SSA concentrations within the MBL with the intent of 

probing the physical processes that control those distributions (e.g., Lenain & Melville, 

2017; Murphy et al., 2019; Reid et al., 2001). Aircraft measurements offer the benefit of (i) 

providing vertically resolved boundary layer information with high spatial and temporal 

resolution, (ii) offering insight into factors that are related to SM-SSA concentration and 

associated spatial distribution, and (iii) helping to validate findings from laboratory and 

modeling studies. Aside from intercomparing SM-SSA levels with other MBL properties in 

the form of scatterplots, machine learning regression (MLR) algorithms are also applied in 

this study, which can make predictions given highly complex and nonlinear systems. MLR 

has been applied to a range of complex systems, such as for interpretation of mass 

spectroscopy data (Christopoulos et al., 2018; Marsden et al., 2019), studies of aerosol 

mixing states using GCMs (Hughes et al., 2018), and studies related to weather prediction 

models (Feng et al., 2018). MLR offers the opportunity to indirectly probe physical 

processes influencing their concentrations without the constraints of theory-based 

frameworks that have failed to provide consensus on concentrations and spatial distributions.

The MONterey Aerosol Research Campaign (MONARC) in May–June 2019 involved 

repeating identical flight paths off the California coast at the same time each flight day to 

measure 2-D profiles of SM-SSA particles. This statistical approach of airborne data 

collection provided a data set that could be tested with MLR techniques to determine what 

MBL properties were most influential for predicting near surface (<60 m) SM-SSA particle 

concentrations. The goal of this study is to use the MONARC data to address the following 

questions: (i) What was the meteorological backdrop during the MONARC campaign and 

how did the SM-SSA number and volume concentrations vary in different meteorological 

regimes encountered?; (ii) how were SM-SSA particles distributed within the MBL, both 

vertically and horizontally with respect to offshore distance, under varying MBL 
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conditions?; (iii) how are MBL conditions related to SM-SSA number and volume 

concentrations, especially at the near surface level?; and (iv) how well can MLR models 

predict near surface SM-SSA number and volume concentrations? The results of this study 

have implications for general understanding of the nature of SM-SSA particle concentrations 

in the MBL for all oceanic areas and for demonstrating the utility of the flight approach 

taken for future field studies. Note also that while we hereafter reference SM-SSA 

concentrations, our results do not preclude the possibility that other aerosol types such as 

biological particles contribute to the concentrations reported here.

2. Methods

2.1. Field Campaign Description and Flight Strategy

MONARC was carried out between 28 May and 14 June 2019 using the Center for 

Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The MONARC had a total 

of ~70 flight hours spread across 14 research flights (RFs) based out of Marina, California, 

and with sampling conducted off the coast over the northeastern Pacific Ocean. Table 1 

summarizes pertinent details of each RF, including dates, times, and the “turnaround point” 

time, which will be described below. The MONARC flights were designed to be as repetitive 

as possible to ensure that flight-to-flight comparisons could be done meaningfully in a 

statistical way. Similarly, comparisons were possible at each point along the flight path at 

two times on a particular day.

Each RF involved following a straight path from Marina Airport to a point as far as possible 

offshore to the west given fuel limitations and then following the same path back to Marina 

Airport. Figure 1 shows both the 2-D flight paths for all the MONARC RFs and separately 

the 3-D path for RF14 as a representation of the “cycle” method employed each RF. During 

the straight paths to and from Marina, the Twin Otter went through repetitive stair-stepping 

cycles involving a series of different level legs varying in altitude both below and above the 

top of the MBL. The steps involved for each cycle were as follows: near surface leg (~30 m 

altitude and always <60 m), below-cloud leg (just below cloud-base), cloud-base leg (just 

above cloud-base), cloud-mid leg (midpoint between cloud-top and cloud-base), cloud-top 

leg (just below cloud-top), wheels-in leg (just above cloud-top with aircraft wheels roughly 

skimming cloud tops), above-cloud leg (150 m above cloud-top), and lastly a descent down 

to the near surface level to repeat the cycle. The altitudes of all legs, except for the near 

surface leg, were set based on the cloud-base and cloud-top altitudes. In RFs where no 

clouds were present, the altitude at the top of the MBL was used to set approximate altitudes 

for each leg, with three legs still below the MBL top and at least two above it. The typical 

time duration for a given cycle was between 10 and 40 min, with 11 to 14 cycles usually 

conducted per ~5 h flight.

At the “turnaround point” for each RF, which was the farthest west point of the flight (~300 

to 400 km offshore), the Twin Otter would perform a downward spiral down to the near 

surface level. This spiral was always initiated at the end of the above cloud leg (150 m above 

tops) and would last approximately ~12 min.
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2.2. Instrumentation

The Twin Otter carried a myriad of instruments in order to track position and measure a suite 

of atmospheric parameters related to meteorology, aerosols, and clouds. For a complete list 

and detailed description of all the instrumentation carried by the Twin Otter along with 

quality control/assurance steps, refer to Sorooshian et al. (2018). A short summary of the 

instruments used in this study is provided here.

The navigational and meteorological systems on the Twin Otter measure aircraft position 

(latitude/longitude and altitude), barometric pressure (pressure altitude), horizontal and 

vertical wind velocities, ambient temperature (Tamb), skin surface temperature, and aircraft 

true air speed. Measurements of skin surface temperature are taken in this study to be 

equivalent to SST as we use data only when collected at an altitude less than 60 m to prevent 

any cloud interference and to maximize getting a measurement of the ocean surface rather 

than the cloud surface (Sorooshian et al., 2018). The Twin Otter has a set of wing-mounted 

aerosol and cloud sampling probes to characterize aerosol and cloud droplet size 

distributions. The probes relevant to this study include the Cloud, Aerosol, and Precipitation 

Spectrometer (CAPS; Droplet Measurement Technologies, Inc.), which contains both the 

cloud and aerosol spectrometer (CAS) and the cloud imaging probe (CIP). The CAS 

measures aerosol and droplet size distributions for the ambient Dp range between 0.76 and 

75.80 μm.

Because the CAS samples aerosol under ambient relative humidity (RH) conditions, the dry 

Dp range of each CAS size bin had to be calculated. To do this, the Dp at ambient RH 

conditions was first converted to Dp at RH = 80% by using the growth factor 

parameterization presented by Lewis and Schwartz (2004). Note that other parameterizations 

exist such as that of Zieger et al. (2017); however, based on sensitivity calculations, the 

percent error for dry Dp values based on the ambient Dp range between 3 and 10 μm at 90% 

RH is ≤3% between the two methods. Thus, the conclusions reached here are preserved 

regardless of which of the two parameterization methods are used. Following Lewis and 

Schwartz (2004) and Jaeglé et al. (2011), the dry Dp was subsequently calculated by 

dividing the Dp at RH = 80% by two. The SM-SSA number and volume concentrations, 

referred to hereafter as N>1 and V>1, respectively, were calculated using CAS size bins 

where the calculated minimum dry Dp was ≥1 μm. The range observed for the upper bound 

of dry Dp for the SM-SSA distributions varied between 14 and 63 μm.

The CIP measures droplet and raindrop number concentrations for the Dp range between 25 

and 1,550 μm. The CIP is used to calculate cloud-base drizzle rate (rcb) which is calculated 

using the lower third of clouds. A PVM-100A probe was additionally used to measure liquid 

water content (LWC) using light diffraction (Gerber et al., 1994).

A cloud water collector was manually protruded out of the fuselage roof when sampling in 

cloud (Hegg & Hobbs, 1986). Cloud water samples collected during each RF were analyzed 

using ion chromatography (IC; Thermo Scientific Dionex ICS-2100 system). Of relevance to 

this study was the measurement of Na+, which is used here as a tracer for SSA. In contrast, 

Cl− (the major component of SSA by mass) is vulnerable to well-documented depletion 

reactions in the region (Braun et al., 2017). The reader is referred to past works for more 
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detailed explanation of the cloud water collection and analysis details (MacDonald et al., 

2018; Wang et al., 2014; Wang et al., 2016). The cloud water data were used to provide 

confidence that the use of the CAS data in cloud-free conditions in the MBL was a 

meaningful measurement of SM-SSA. Mass size distributions of sea salt in the study region 

previously showed that the majority of the mass resides between 1.8 and 5.6 μm (Maudlin et 

al., 2015; Prabhakar et al., 2014), and thus, the air-equivalent mass concentrations of sea salt 

in cloud water are reflective of SM-SSA. The discussion in the supporting information 

(section S1) shows that V>1 concentration in the MBL (from the CAS probe) was 

significantly correlated with cloud water Na+ mass concentration (see Figure S1). The 

rationale for relying on the CAS measurements rather than cloud water Na+ is that the 

former (i) provides size distribution data rather than a bulk mass concentration, (ii) was 

measured for more cycles, thus providing more statistics, (iii) includes all aerosol types 

rather than just SSA although SSA is expected to be dominant, and (iv) is not subject to 

uncertainties associated with the cloud water probe collection process (Crosbie et al., 2018).

2.3. Data Processing

As described above, the MONARC flights consisted of conducting repeated cycles, which 

were composed of several short level legs at different altitudes within and above the MBL. 

Each cycle provided consecutive level legs ranging in altitudes from ~30 m to greater than 

150 m above the MBL. The MBL cap is defined in this study by the altitude at which there 

was an increase in potential temperature (θ) of 1°C from the measured value during the near 

surface level leg. The SM-SSA and MBL data were grouped into altitude bins, and the mean 

of each data parameter was calculated per bin. For example, the near surface altitude bin in 

this study ranged from ~30 to 60 m. The second altitude bin ranged from 60 to 100 m, and 

the remaining altitude bins were in 50 m increments ranging from 100 to 1,500 m. A total of 

31 altitude bins were established using this method. The highest bins closest to 1,500 m 

sometimes registered no data for cycles when the aircraft never reached as high as 1,500 m.

There were 147 cycles conducted during MONARC, and 73 of these had clouds present. The 

criteria for having clouds present were LWC ≥ 0.02 g cm−3 (Dadashazar et al., 2017). 

Measurements of SM-SSA taken when LWC ≥ 0.02 g cm−3 or when RH ≥ 98% were 

discarded to reduce noise from droplet shatter. Drizzle rate calculations (e.g., rcb) were 

performed using the size distributions measured by the CIP in conjunction with established 

relationships between drop size and fall velocity (Feingold et al., 2013). These calculations 

assumed homogeneous cloud properties during the duration of an individual cycle. Effective 

rcb for each RF rcb  was calculated by taking the average rcb of cycles with clouds present 

(i.e., rcb > 0) in the RF, multiplying by the number of cycles that measured rcb, and dividing 

by the total number of cycles in the RF. Lastly, turbulent kinetic energy (TKE) was 

calculated as half of the sum of the square of standard deviations of the vertical and 

horizontal wind velocity.

2.4. Machine Learning Regression

MONARC data were prepared for supervised MLR by removing as many co-linear 

predictors as possible in order to ensure model complexity was minimal while still yielding a 

robust model. Supervised MLR algorithms use a training data set, which includes both 
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predictor and response data, to build a predictive model for estimating the response values of 

independent data. The average N>1 and V>1 concentrations from the near surface altitude bin 

of each cycle are used as separate response variables. Major types of supervised MLR 

algorithms include linear regression, regression tree, support vector machine (SVM), 

regression tree ensembles, and Gaussian process regression (GPR). While these are the 

general types of algorithms, there are subtypes of these that can change the algorithm’s 

performance and improve robustness. In general, each supervised MLR model performs 

differently depending on the application and exhibits different strengths and weaknesses. 

Many sophisticated methods use the optimization of model learning parameters (known as 

hyperparameter optimization) followed by cross-validation techniques to further improve an 

algorithm’s accuracy while also preventing overfitting.

As a preliminary step, this study compares the results of different trained and cross-validated 

MLR models using the entire data set for model training without hyperparameter 

optimization or out of bag (OOB) testing. The following nine categories of MLR models 

were trained and compared in the preliminary step: (i) multivariate linear regression 

(MVLR), (ii) quadratic SVM, (iii) cubic SVM, (iv) Gaussian SVM, (v) gradient boosted 

regression tree (GBRT), (vi) bagged regression tree, (vii) exponential GPR, (viii) squared 

exponential GPR, and (ix) rational quadratic GPR. The preliminary comparison step is 

followed by rigorous training, cross-validation, and OOB testing of model(s) exhibiting the 

highest accuracy. In order to further improve the predictive value of the supervised MLR 

process, OOB testing was performed by splitting the data set into two parts, which are 

defined as the training/cross-validation set and the testing set. The training/cross-validation 

set includes a random selection of 70% of the data set, while the testing set comprises the 

remaining 30%. This training process also involved hyperparameter optimization using grid-

search, which tries all combinations of hyperparameters to reduce mean squared error 

(MSE) of the trained model.

The final training process was repeated using 100 randomly selected data samples to prevent 

over- or under-estimation of predictive robustness. After the final training process was 

complete, the 100 trained models were analyzed further for more information such as 

identifying predictors of most importance. Finally, the model sets with the best results for 

predicting N>1 and V>1 concentrations are presented. Supervised MLR for all models was 

performed with the MATLAB (2019b) Statistics and Machine Learning Toolbox™. The 

cross-validation procedure used for all models is termed k-fold cross-validation, which 

involves resampling of training data. The k-fold cross-validation step reduces bias and 

improves robustness of model predictions, especially for a limited data sample size. The 

number of folds used for cross-validation in this study is 5 (i.e., k = 5) as this has been 

shown to provide maximal model prediction robustness while providing minimal bias 

(James et al., 2013).

The following measurements were chosen to capture the physical processes that are thought 

to influence N>1 and V>1 concentrations: near surface values of horizontal wind speed, 

horizontal wind direction, SST, Tamb, RH, and TKE, in addition to MBL depth, and rcb. The 

magnitude of TKE is related to the amount of turbulence present in the MBL, which has 

been shown to be related to SM-SSA vertical transport in the study region (e.g., Dadashazar 
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et al., 2017). The MLR analysis was run using the cycle-averaged measurements from the 

147 cycles as inputs, and it should be noted that it is possible that some of the measurements 

are not necessarily independent despite being separated by space and time.

3. Results and Discussion

3.1. Synoptic and Meteorological Conditions

The lifetime of SM-SSA can last up to several days owing to the mixing velocity in the 

MBL exceeding the settling velocity. While the local state is often used to predict SSA 

characteristics in the MBL, this is not fully comprehensive as larger-scale conditions can 

matter including air mass history. This section provides a summary of the broader conditions 

impacting the study region during MONARC, including a description of four distinct 

synoptic and meteorological regimes that were observed. These regimes were determined 

based on 500 mb isobaric charts (www.wpc.ncep.noaa.gov), 72 hr back-trajectories using the 

Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model from NOAA 

(Stein et al., 2015), as well as MBL depth (Table 2), rcb (Table 3), and flight-averaged values 

of near surface Tamb, wind speed, and wind direction. The HYSPLIT simulations were 

conducted with an ending altitude of 50 m at three distinct points along the flight path 

(Figure 2) using the meteorological data from the Global Data Assimilation System (GDAS) 

1° × 1° HYSPLIT meteorological data set.

The first four (RF01–RF04) and the last two (RF13–RF14) RFs of MONARC (Regime 1) 

were characterized by the presence of a low-pressure trough located to the north and over the 

operational area and a high-pressure ridge located to the west of the operational area. The 

synoptic state of Regime 1 corresponded to Tamb ranging from 12°C to 14°C, an air mass 

moving over the open ocean from the northwest, wind speeds between 7 and 13 m s−1, MBL 

depth between 330 and 520 m, and rcb between 0.03 and 0.97 mm day−1. During Regime 2 

(RF05–RF07), a high-pressure ridge moved over the operational area and low-pressure 

troughs set up to the east and to the northwest of the operational area. The synoptic state of 

Regime 2 corresponded to Tamb ranging from 12°C to 14°C, an air mass moving from the 

north along and over the northern coast of California, wind speeds between 10 and 13 m s−1, 

MBL depth between 230 and 420 m, and rcb between 0.00 and 0.02 mm day−1.

Regime 3 (RF08–RF09) was characterized by the presence of a low-pressure trough located 

to the north and directly over the operational area and a high-pressure ridge located just to 

the east of the operational area. The synoptic state of Regime 3 corresponded to Tamb from 

12°C to 13°C, an air mass moving from the northwest over the open ocean, wind speeds 

between 12 and 14 m s−1, MBL depth between 670 and 720 m, and rcb of 0.00 mm day−1. In 

contrast to the other regimes, Regime 3 had no cloud presence observed in the study region. 

Regime 4 (RF10–RF12) had high-pressure ridges over and to the northwest of the 

operational area with a low-pressure trough to the southwest of the operational area. The 

synoptic state of Regime 4 corresponded to Tamb from 15°C to 19°C, a continental air mass 

moving in from the northeast, wind speeds from 3 to 6 m s−1, MBL depth between 80 and 

320 m, and rcb of 0.00 mm day−1. The Tamb observed during Regime 4 was the highest of 

the four regimes.
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3.2. Near Surface SM-SSA Concentrations

In conjunction with a variety of observed synoptic and meteorological conditions, there was 

also a range in the near surface N>1 and V>1 concentrations observed during MONARC. The 

RF-averaged near surface N>1 and V>1 concentrations ranged from 0.15 to 3.12 cm−3 and 

from 0.4 to 22.8 μm3 cm−3 (Table 4). The N>1 concentrations are within the expected range 

of 10−1 to 10 cm−3 (for the dry Dp range of 0.8 to3.0 μm) reported by Lewis and Schwartz 

(2004), and the V>1 concentration range is slightly wider than the dry volume range of 1 to 

12 μm3 cm−3 (for the dry Dp range of 0.7 to 20.0 μm) observed by Reid et al. (2006). Some 

of the notable differences in the regime average near surface N>1 and V>1 concentrations for 

each regime described in section 3.1 are as follows (along with ± one standard deviation): (i) 

N>1 and V>1 concentrations (0.8 ± 0.4 cm−3 and 3.5 ± 6.5 μm3 cm−3, respectively) for 

Regime 1 were the lowest of the four regimes, coincident with the highest drizzle rates; (ii) 

Regime 2 had the highest N>1 concentrations(2.8 ± 0.9 cm−3) of the four regimes, coincident 

with reduced drizzle and relatively thin MBL depths; and (iii) Regime 3 had the highest V>1 

concentrations (12.3 ± 5.7 μm3 cm−3) of the four regimes, which coincided with cloud-free 

conditions and the highest TKE values (0.16 ± 0.15 m2 s−2).

The RF-averaged dry volumetric median diameter (VMD), dry count median diameter 

(CMD), and geometric standard deviation (σg) observed during MONARC (Table 4) ranged 

from 1.87 to 2.66 μm, 1.72 to 2.61 μm, and 1.20 to 1.43, respectively. The average VMD 

from all MONARC data was ~2.12 μm, which is comparable to the range reported by Reid 

et al. (2006) (2.0–2.75 μm) if their Dp at RH = 80% is divided by two as was done in this 

study. The CMD range was slightly higher than 0.5 to 2.0 μm, while the σg range was 

systematically lower than 1.8 to 2.0 μm, which were both reported by Reid et al. (2001) for 

the Dp range of 0.5 to 5 μm. It is postulated that the differences between the CMD and σg of 

this study and those reported by Reid et al. (2001) stem from the inclusion of submicrometer 

SSA into that study’s aerosol spectrum. Of the four synoptic/meteorological regimes, 

Regime 3 had the highest observed average VMD and CMD, which were 2.7 ± 0.4 μm and 

2.4 ± 0.2 μm, respectively. Regime 1 had the lowest VMDs (1.9 ± 0.5 μm) and Regime 2 had 

the lowest CMDs (1.9 ± 0.3 μm) of the four regimes.

3.3. Vertical and Spatial SM-SSA Distributions

While the previous sections were focused on describing the average near surface N>1 and 

V>1 concentrations for different synoptic/meteorological regimes, this section describes the 

vertical and spatial (Figures 3–5) profiles of N>1 and V>1 concentrations of those same 

regimes using representative flights from each regime. The N>1 and V>1 concentrations of 

Regime 1 (RF03) were less than ~1 cm−3 and ~2.5 μm3 cm−3, respectively, from the near 

surface until just below the MBL cap. The N>1 and V>1 concentrations were insensitive to 

offshore distance.

The N>1 and V>1 concentrations of Regime 2 (RF06) decreased with increasing distance 

from shore while remaining relatively constant from the near surface to just below the MBL 

cap. N>1 and V>1 concentrations of this regime ranged from ~1.5 to ~4 cm−3 and from ~6 to 

~12 μm3 cm−3, respectively. Similar to Regime 2, the N>1 and V>1 concentrations of Regime 

3 (RF08) decreased with increasing distance from shore. These concentrations ranged from 

Schlosser et al. Page 9

J Geophys Res Atmos. Author manuscript; available in PMC 2020 November 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



~1 to ~3 cm−3 and from ~10 to ~13 μm3 cm−3, respectively. Although the MBL depth of 

Regime 3 increased greatly (from ~375 to ~900 m) with increasing distance from shore, the 

N>1 and V>1 concentrations remained relatively constant from the near surface until just 

below the MBL cap at all distances within the study region.

The N>1 and V>1 concentrations observed during Regime 4 (RF10) were relatively constant 

from the near surface until just below the MBL cap. The N>1 and V>1 concentrations of this 

regime were unique in that they increased with offshore distance. These concentrations 

ranged from ~1.5 to ~4.5 cm−3 and from ~5 to ~25 μm3 cm−3, respectively.

3.4. Factors Related to Near Surface SM-SSA

3.4.1. Scatterplots—As demonstrated in the previous sections, different synoptic and 

meteorological regimes correspond to distinct N>1 and V>1 concentration ranges and spatial 

trends. The following sections aim to examine the relations between near surface N>1 and 

V>1 concentrations and a variety of MBL properties (i.e., wind speed, wind direction, Tamb, 

SST, TKE, RH, MBL depth, and rcb). Note that cycle-averaged rcb values are used hereafter 

rather than those for rcb to capture effects of wet scavenging for each cycle. Figures 6 and 7 

illustrate scatterplot relationships between the near surface N>1 and V>1 concentrations, 

respectively, and MBL properties for all 147 cycles of MONARC. The relationships between 

these concentrations and the MBL parameters were highly dynamic and varied depending on 

regime. Consequently, none of cumulative scatterplots had a best fit line that was statistically 

significant with a p value below 0.05. The corresponding correlation coefficients of each 

panel are provided in Table S1, with R values ranging from −0.36 to 0.21. The strongest 

relationships (regardless of sign) for both N>1 and V>1 were with rcb (R = −0.36 and −0.32, 

respectively). The lack of notable trends discernable from these scatterplots suggests that 

there are no well-defined relations, especially of a linear nature. Consequently, there may be 

many factors that govern N>1 and V>1 concentrations such as the previous history of 

sampled air masses that may outweigh influence from local conditions.

3.4.2. Machine Learning Analysis—In response to how the previous section showed 

that scatterplots cannot adequately capture relationships between SM-SSA and MBL 

properties, assuming that they exist in the data set, here we employ a different approach (i.e., 

MLR) to determine the best predictors of near surface N>1 and V>1 concentrations (Figures 

8–12). The first step for MLR analysis was to choose a model among the nine categories of 

MLR models (e.g., MVLR, three subtypes of SVM, GBRT, bagged regression tree, and three 

subtypes of GPR).

The preliminary analysis described in section 2.4 found that cross-validated predictions 

using the exponential GPR and GBRT models had the lowest MSE values for both N>1 and 

V>1 concentrations. As a next step, the exponential GPR and GBRT models were 

repetitively trained using random sampling with cross-validation, OOB testing, and grid-

search hyperparameter optimization. Table S2 summarizes statistics resulting from OOB 

testing of the training of the GPR and GBRT models for predicting both N>1 and V>1 with 

the same variables shown in the scatterplots (Figures 6 and 7). Table S2 also shows the R2 

resulting from MVLR analysis as a base comparison with the more complex MLR models. 
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The exponential GPR models for N>1 and V have average R2 >1 values between 0.74 and 

0.76, maximum R2 values of 0.91, and minimum R2 values between 0.41 and 0.54. The 

GBRT and MVLR models have lower average R2 values for predicting both N>1 and V>1 

concentrations. The average R2 values resulting from GBRT models for predicting N>1 and 

V>1 concentrations were 0.71 and 0.60, respectively, while those resulting from MVLR were 

0.15 and 0.13, respectively. Given the robustness of the exponential GPR models as 

compared to the GBRT and MVLR models, hereafter the discussion centers around the GPR 

results with regard to relationships between near surface SM-SSA concentrations and other 

MBL parameters. Note that the analysis is based on local MBL parameters and does not 

incorporate aspects associated with the air mass history, which could certainly be influential 

and were previously involved with the regime analysis of sections 3.1–3.3 and 3.4.1.

Partial dependency (PD) plots demonstrate how manipulation of one predictor (i.e., wind 

speed, wind direction, Tamb, SST, TKE, RH, MBL depth, or rcb), while holding the other 

predictors constant in value, changes the response variable (N>1 and V>1) within the model 

(Figures 8 and 9). With the exception of the last two predictors, all are near surface values. 

Increasing values of PDN>1 and PDV>1 indicate that the corresponding change on the x-axis 

for the value of the specific parameter is conducive to higher concentration values.

From these PD plots a variety of relationships were noted to be worthy of discussion. Near 

surface wind speed, which has long been used as the primary driver of SM-SSA emissions 

(Lewis & Schwartz, 2004; Monahan & Muircheartaigh, 1980), exhibits varying signs in its 

relationship with N>1 below (positive) and above 5 m s−1 (negative). The relationship 

between wind speed and V>1 concentration is inverse for nearly the entire range of wind 

speeds. Concentrations of N>1 and V>1 were generally negatively related to SST with the 

caveat that the majority of SST data was below 14°C and within a fairly narrow range.

MBL stability primarily influences the vertical distribution of SSA particles. MBL stability 

is related to the vertical profiles of near surface wind speed, Tamb, and RH; however, it is 

generally parameterized by the difference between SST and Tamb. Higher (lower) TKE and 

RH in conjunction with lower (higher) difference between SST and Tamb corresponds to an 

unstable (stable) MBL (Lewis & Schwartz, 2004; Monahan et al., 1986). An unstable MBL 

will enhance turbulence and entrainment rate, and a stable MBL will suppress turbulence 

and entrainment rate. Enhanced turbulence corresponds to increases in the residence time of 

larger SSA particles in the MBL. The PD plots demonstrate that both N>1 and V>1 

concentrations are positively related to Tamb from ~11°C to 15°C, above which the 

relationship becomes either negative (N>1) or dampens (V>1). Caution should be used in the 

interpretation of the trends between Tamb and N>1 and V>1 concentrations for values of Tamb 

above 15°C due to a limited number of sample points (13% of the total data set). The N>1 

and V>1 concentrations increase over nearly the entire range of TKE values (especially when 

TKE was above ~0.15 m2 s−2). N>1 (V>1) concentrations increase with respect to RH from 

40% to 80% (40% to 65%); however, N>1 (V>1) concentration decreases after RH is greater 

than 80% (65%). Only 10% of the RH data were below 70%, and interpretation of trends 

below this range should be viewed with caution.
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Higher rcb values correspond to lower N>1 and V>1 concentrations, leveling off above 2 mm 

day−1 at ~0.50 cm−3 and ~1.4 μm3 cm−3, respectively. The presence of drizzle within the 

MBL is known to influence SSA particle lifetime due to wet scavenging (Hoppel et al., 

2002) and is usually parameterized by statistical methods within transport models (e.g., 

Dana & Hales, 1976; MacDonald et al., 2018).

The PD plots show a strong relationship between increasing (decreasing) MBL thickness 

and decreasing (increasing) N>1 and V>1 concentrations, which is presumably because there 

is a larger (smaller) volume for mixing. This work agrees with previous work by 

demonstrating an inverse relationship between MBL depth and N>1 and V>1 concentrations 

(Lewis & Schwartz, 2004).

Figures 10 and 11 show surface PD plots for N>1 and V>1 concentrations, highlighting the 

28 possible combinations in which the response variable can change given the manipulation 

of two of the six predictors. A few selected results from these surface PD plots are 

noteworthy and also help reinforce findings already presented from the scatterplots and 

MLR results in Figures 8 and 9. The surface PD plots demonstrate that maximal N>1 and 

V>1 concentrations will be present with MBL depths below 400 m and r below 1 mm day−1 

cb. The plots illustrate well that TKE has a more pronounced impact on V>1 versus N>1 

when other conditions are held fixed. Finally, the impacts of RH on N>1 and V>1 are 

complex with positive relationships for many panels up to some value (~80% and ~65%, 

respectively), above which there is a negative relationship. This builds off earlier results with 

a plausible physical explanation being that at sufficiently high RHs, SM-SSA particles are 

more swollen and thus evaporate more slowly and have a higher probability of falling back 

into the water.

Predictor importance (ΔPD) is defined as the difference between the maximum and 

minimum values of the response associated with the PD analysis of each predictor (Figure 

12). The order of importance (in descending order) for predicting N>1 concentration is MBL 

depth, rcb, RH, Tamb, TKE, SST, wind speed, and wind direction. The order of importance 

for predicting V>1 concentration is TKE, rcb, MBL depth, SST, Tamb, RH, wind speed, and 

wind direction. These importance rankings clearly demonstrate that local wind speed has 

only a small role in influencing near surface N>1 and V>1 concentrations, and this is likely 

owing to the fact that the air mass history and the winds associated with that history are 

more influential in driving the MBL SM-SSA concentrations. The results show that MBL 

depth is more important for predicting N>1 as compared to V>1 concentration and drizzle is 

similarly very influential for both N>1 and V>1 concentrations. The results of Figure 12 also 

confirm earlier results that TKE has a stronger relationship with V>1 as compared to N>1.

4. Conclusions

This study examines flight data from the 2019 MONARC campaign, which featured 14 

nearly identical flight patterns off the California coast at the same time on different days. 

The presented analyses take advantage of a statistical approach to airborne data collection in 

conjunction with MLR techniques with the goal of addressing the nature and character of 
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SM-SSA particles in the MBL over the northeastern Pacific Ocean. The primary results of 

this study are as follows in order of the questions laid out at the end of section 1:

i. Four MBL regimes were identified during MONARC differing in cloud fraction, 

air mass source origin, and meteorological and synoptic features. N>1 and V 

concentrations (0.8 ± 0.4 cm−3 >1 and 3.5 ± 6.5 μm3 cm−3, respectively) were 

lowest in the regime with the highest drizzle rates. The regime with thin MBL 

depths and negligible drizzle rates coincided with the highest N>1 

concentrations(2.8 ± 0.9 cm−3). The highest V>1 concentrations (12.3 ± 5.7 μm3 

cm−3), volumetric median diameter(2.7 ± 0.4 μm), and count median diameter 

(2.4 ± 0.2 μm) coincided with a regime characterized by cloud-free conditions 

and the highest MBL turbulence and vertical mixing.

ii. Vertical SM-SSA profiles are sensitive to MBL depth and rcb. Profiles of N>1 and 

V>1 as a function of offshore distance either showed a decrease, increase, or no 

change depending on the MBL regime.

iii. Near surface RH (Tamb) were generally negatively (positively) related with both 

N>1 and V>1; however, at some lower RH (higher Tamb) values this relationship 

was positive (negative). Increases in either MBL depth or rcb were related to 

reductions in both N>1 and V>1 concentrations. These relationships are likely due 

to dilution (increased MBL depth) and reduced aerosol lifetime (increased rcb). 

Both N>1 and V>1 concentrations tended to be positively related to turbulence 

(i.e., near surface TKE in this study).Based on MLR analysis, MBL depth was 

found to be the most influential for N>1, with higher depths corresponding to 

lower N>1. TKE was the most important for V>1, with the two being positively 

related. Drizzle rate was the second most important predictor (and negatively 

related) for both N>1 and V>1.

iv. Of the nine categories of MLR models used to predict near surface N>1 and V>1 

concentrations, the exponential GPR and GBRT model categories showed higher 

accuracy than the others without OOB testing or hyperparameter tuning. After 

OOB training of the exponential GPR and GBRT models using 100 random 

samples, the set of exponential GPR models had higher average R2 values than 

the set of GBRT models. Based on the apparent robustness of the exponential 

GPR model, this study presents one set of exponential GPR models for 

predicting near surface N>1 and another set of exponential GPR models for 

predicting near surface V>1 concentrations.

These results exemplify the utility of data collected with repetitive flight patterns over 

multiple weeks to analyze relationships between aerosols and MBL conditions. While 

results from this study are not necessarily similar to what would be found in other regions, 

the methods developed here can be applied to similar data sets from different regions. The 

MBL regimes and predictive models can also be utilized by future investigators to compare 

against other models and near surface measurements.
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Key Points:

• Vertical and horizontal profiles of supermicron sea salt aerosol concentrations 

are related to synoptic conditions and air mass history

• Marine boundary layer depth (turbulent kinetic energy) is the best predictor 

for supermicron sea salt aerosol number (volume) concentration

• Drizzle rate is the second most influential parameter for both supermicron sea 

salt aerosol number and volume concentration
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Figure 1. 
(a) Flight paths for all research flights (RFs) during the MONARC and (b) a three-

dimensional profile of a representative flight (RF14 on 14 June 2019), which was similar for 

all flights. The blue (orange) trace in (b) is for the first (second) half of the flight.
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Figure 2. 
Three-day HYSPLIT back trajectories ending at 50 m above level for three different points 

(represented by black dots) along the flight path sampled during each RF.
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Figure 3. 
Vertical profile of total N>1 concentration for (a) RF03 (Regime 1), (b) RF06 (Regime 2), (c) 

RF08 (Regime 3), and (d) RF10 (Regime 4). Points are colored by turbulent kinetic energy 

(TKE).
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Figure 4. 
Two-dimensional horizontal profile of total N>1 concentration with respect to distance from 

the shore for (a) RF03 (Regime 1), (b) RF06 (Regime 2), (c) RF08 (Regime 3), and (d) 

RF10 (Regime 4). The top of the MBL is indicated with a black line. Cells are colored by 

N>1 concentration. Blank cells indicate that the aircraft did not fly in that pixel.
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Figure 5. 
Same as Figure 4 except cells are colored by V>1 concentration.
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Figure 6. 
Scatterplots between cycle-averaged values of near surface N>1 concentration versus several 

other cycle-averaged MBL conditions.
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Figure 7. 
Same as Figure 6 but for near surface V>1 concentration on y-axis.

Schlosser et al. Page 26

J Geophys Res Atmos. Author manuscript; available in PMC 2020 November 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 8. 
Partial dependency (PD) plots for different MBL parameters used as predictors for near 

surface N>1 concentration. The solid-blue line represents the mean and the dashed-yellow 

and dashed-orange lines signify the mean plus and minus one standard deviation, 

respectively.
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Figure 9. 
Same as Figure 8 but for near surface V>1 concentration.
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Figure 10. 
Surface PD plots for 28 unique pairs of MBL parameters used as predictors for near surface 

N>1 concentration. Cells are colored by PD of N>1 concentration.
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Figure 11. 
Same as Figure 10 but for near surface V>1 concentration.
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Figure 12. 
Mean difference in the PD (ΔPD) of different MBL variables used as predictors of near 

surface (a) N>1 and (b) V>1 concentrations. Error bars represent one standard deviation.
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Table 1

Flight Date, Takeoff and Landing Times (UTC), and Latitude and Longitude of the Turnaround Point (Most 

Western Point) for Each Research Flight (RF) in the MONARC

RF Date Takeoff Landing Lat (°N) Lon (°E)

1 05/28/2019 20:12:30 23:51:35 37.29 −125.33

2 05/29/2019 17:39:32 22:20:00 37.45 −126.41

3 05/30/2019 17:36:43 22:21:32 37.46 −126.55

4 05/31/2019 17:43:32 22:19:01 37.42 −126.25

5 06/03/2019 17:42:03 22:22:54 37.46 −126.53

6 06/04/2019 17:51:22 22:50:18 37.47 −126.70

7 06/05/2019 17:36:49 22:44:14 37.49 −126.69

8 06/06/2019 17:47:19 23:02:25 37.47 −126.69

9 06/07/2019 17:09:31 22:23:50 37.49 −126.70

10 06/10/2019 17:31:59 22:14:13 37.49 −126.71

11 06/11/2019 17:35:25 22:21:27 37.49 −126.71

12 06/12/2019 17:27:12 22:32:01 37.49 −126.72

13 06/13/2019 17:25:47 22:23:48 37.49 −126.74

14 06/14/2019 17:45:48 22:54:57 37.49 −126.72

Note. Dates are formatted as MM/DD/YYYY.
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Table 3

Mean, Maximum, and Minimum Cloud-Base Rain Rate (rcb) for All Cycles Measured During Each RF

Regime RF Mean Max Min rcb

1 1 0.05 0.46 0.01 0.03

1 2 1.43 6.27 0.01 0.84

1 3 1.18 2.94 0.36 0.97

1 4 0.74 4.60 0.01 0.59

2 5 0.04 0.50 0.00 0.01

2 6 0.00 0.00 0.00 0.00

2 7 0.04 0.15 0.00 0.02

3 8 0.00 0.00 0.00 0.00

3 9 0.00 0.00 0.00 0.00

4 10 0.00 0.00 0.00 0.00

4 11 0.00 0.00 0.00 0.00

4 12 0.02 0.07 0.00 0.00

1 13 0.22 1.75 0.00 0.22

1 14 0.26 3.06 0.01 0.23

Note. Also listed is the effective rain rate rcb  observed during each RF. Units of rcb and rcb are given in units of mm day−1.
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