259 research outputs found
A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro
Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold
International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered
The impact of hypsarrhythmia on infantile spasms treatment response: Observational cohort study from the National Infantile Spasms Consortium
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141801/1/epi13937_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141801/2/epi13937.pd
Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2)
BACKGROUND
Deficiency of adenosine deaminase 2 (DADA2) is a syndrome with pleiotropic manifestations including vasculitis and hematologic compromise. A systematic definition of the relationship between ADA2 mutations and clinical phenotype remains unavailable.
OBJECTIVE
We tested whether the impact of ADA2 mutations on enzyme function correlates with clinical presentation.
METHODS
DADA2 patients with severe hematologic manifestations were compared with vasculitis-predominant patients. Enzymatic activity was assessed using expression constructs reflecting all 53 missense, nonsense, insertion and deletion genotypes from 152 patients across the DADA2 spectrum.
RESULTS
We identified DADA2 patients presenting with pure red cell aplasia (PRCA, n = 5) or bone marrow failure syndrome (BMF, n = 10). Most patients did not exhibit features of vasculitis. Recurrent infection, hepatosplenomegaly and gingivitis were common in patients with BMF, of whom half died from infection. Unlike DADA2 patients with vasculitis, patients with PRCA and BMF proved largely refractory to tumor necrosis factor inhibitors. ADA2 variants associated with vasculitis predominantly reflected missense mutations with at least 3% residual enzymatic activity. By contrast, PRCA and BMF were associated with missense mutations with minimal residual enzyme activity, nonsense variants, and insertions / deletions resulting in complete loss of function.
CONCLUSION
Functional interrogation of ADA2 mutations reveals an association of subtotal function loss with vasculitis, typically responsive to TNF blockade, whereas more extensive loss is observed in hematologic disease which may be refractory to treatment. These findings establish a genotype-phenotype spectrum in DADA2
An empirical approach to selecting community-based alcohol interventions:combining research evidence, rural community views and professional opinion
<p>Abstract</p> <p>Background</p> <p>Given limited research evidence for community-based alcohol interventions, this study examines the intervention preferences of rural communities and alcohol professionals, and factors that influence their choices.</p> <p>Method</p> <p>Community preferences were identified by a survey of randomly selected individuals across 20 regional Australian communities. The preferences of alcohol professionals were identified by a survey of randomly selected members of the Australasian Professional Society on Alcohol and Other Drugs. To identify preferred interventions and the extent of support for them, a budget allocation exercise was embedded in both surveys, asking respondents to allocate a given budget to different interventions. Tobit regression models were estimated to identify the characteristics that explain differences in intervention preferences.</p> <p>Results</p> <p>Community respondents selected school programs most often (88.0%) and allocated it the largest proportion of funds, followed by promotion of safer drinking (71.3%), community programs (61.4%) and police enforcement of alcohol laws (60.4%). Professionals selected GP training most often (61.0%) and allocated it the largest proportion of funds, followed by school programs (36.6%), community programs (33.8%) and promotion of safer drinking (31.7%). Community views were susceptible to response bias. There were no significant predictors of professionals' preferences.</p> <p>Conclusions</p> <p>In the absence of sufficient research evidence for effective community-based alcohol interventions, rural communities and professionals both strongly support school programs, promotion of safer drinking and community programs. Rural communities also supported police enforcement of alcohol laws and professionals supported GP training. The impact of a combination of these strategies needs to be rigorously evaluated.</p
Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome
Down's syndrome (DS), with an incidence of one in 800 live births, is the most common genetic disorder associated with mental retardation. This trisomy on chromosome 21 induces a variable phenotype in which the only common feature is the presence of mental retardation. The neural mechanisms underlying mental retardation might include defects in the formation of neuronal networks and neural plasticity. DS patients have alterations in the morphology, the density and the distribution of dendritic spines in the pyramidal neurons of the cortex. Our hypothesis is that the deficits in dendritic arborization observed in the principal neurons of DS patients and Ts65Dn mice (a model for DS that mimics most of the structural alterations observed in humans) may be mediated to some extent by changes in their inhibitory inputs. Different types of interneurons control different types of inhibition. Therefore, to understand well the changes in inhibition in DS, it is necessary to study the different types of interneurons separately. We have studied the expression of synaptophysin, Glutamic acid decarboxylase-67 (GAD-67) and calcium-binding protein-expressing cells in the primary somatosensory cortex of 4¿5 month old Ts65Dn mice. We have observed an increment of GAD67 immunoreactivity that is related mainly to an increment of calretinin-immunoreactive cells and among them the ones with bipolar morphology. Since there is a propensity for epilepsy in DS patients, this increase in interneurons might reflect an attempt by the system to block overexcitation rather than an increment in total inhibition and could explain the deficit in interneurons and principal cells observed in elderly DS patients
Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis
Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene expression in the anther and showed that the expression levels of the IGI1 gene in apical parts, including flowers, were higher than in other parts of the plants. The auxin biosynthesis component gene, CYP79B2, was up-regulated in igi1 mutants and the IGI1 gene was down-regulated by IAA treatment. These results indicated that there is an interplay regulation between IGI1 and phytohormone auxin. Moreover, the expression of the auxin-related shoot branching regulation genes, MAX3 and MAX4, was down-regulated in igi1 mutants. Taken together, these results indicate that the overexpression of the IGI1 influenced MAX pathway in the shoot branching regulation
Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.
Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20-->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed
Signal transduction-related responses to phytohormones and environmental challenges in sugarcane
BACKGROUND: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N(2)-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. RESULTS: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. CONCLUSION: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties
- …