195 research outputs found

    Monitoring cetaceans in the North Pacific

    Get PDF
    Two projects were undertaken in order to monitor cetaceans in the North Pacific. The first was designed to obtain passive acoustic data from the U.S. Navy's Northern Edge Range. Three instruments were deployed in April 2008 to monitor both high (up to 25 kHz) and low (up to 1 kHz) frequencies for odontocetes and mysticetes, respectively. Unfortunately, these instruments did not record any data. The second project was to analyses retrospective data obtained by analysts at the Whidbey Island NAVFAC for broad regions of the North Pacific. Long-term (1996-2002) trends of blue and fin whale vocalizations were found to have strong seasonal and geographic differences. Furthermore, the number of fin whale call events detected increased significantly over time throughout the North Pacific. Onset and continuation of fin whale calling seemed to be primarily driven by day length, while blue whale calling behavior was influenced by combinations of sea surface temperature, surface chlorophyll a concentration, and day length.N00244-07-1-0017

    Fine-scale spatial and temporal acoustic occurrence of island-associated odontocetes near a mid-oceanic atoll in the northern Indian Ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Panicker, D., Baumgartner, M. F., & Stafford, K. M. Fine-scale spatial and temporal acoustic occurrence of island-associated odontocetes near a mid-oceanic atoll in the northern Indian Ocean. Marine Ecology Progress Series, 683, (2022): 195–208, https://doi.org/10.3354/meps13947.Temporal patterns of oceanic predators can provide valuable information on both lunar and diel influences not just on the distributions of these predators, but also on prey patches that are often difficult to study. Mid-oceanic island chains in the northern Indian Ocean have high odontocete occurrence, but the ecology of these animals is not well characterized. We investigated fine-scale spatial and temporal patterns of island-associated odontocetes using passive acoustic monitoring from January 2019 to January 2020 around Kavaratti Island, Lakshadweep, India. Based on opportunistic recordings in the presence of odontocetes, the majority of the detected whistles were likely made by spinner dolphins Stenella longirostris. We identified a resident population whose whistle occurrence was significantly influenced by month, site, and diel and lunar cycles. More acoustic detections were made in the northeast monsoon month of November and fewer during pre-monsoon and southwest monsoon periods. Distinct day-night differences along with fine-scale temporal variability were also observed, suggesting that delphinids use nearshore waters as a daytime resting habitat. Odontocete detections were highest during the new moon period and lowest during the first quarter phase. Detection rates were higher on the south side of the island. Our study shows that solar and lunar cycles modulate odontocete vocal occurrence, presumably through influences on their prey. Similarities of odontocete occurrence around Lakshadweep to other mid-oceanic island chains suggests that an island-associated micronekton community may exist around Lakshadweep that may also be important to other pelagic species targeted by local fisheries.Funding was provided by the Office of Naval Research Marine Mammal Biology Program, USA, under grant N000141812795. We thank Ajith Kumar, the National Centre for Biological Sciences and Idrees Babu for in-country support

    Seasonal occurrence of fin whale song off Juan Fernandez, Chile

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buchan, S. J., Gutierrez, L., Balcazar-Cabrera, N., & Stafford, K. M. Seasonal occurrence of fin whale song off Juan Fernandez, Chile. Endangered Species Research, 39, (2019): 135-145, doi:10.3354/esr00956.Fin whales Balaenoptera physalus were the species of baleen whale most widely caught by commercial whaling fleets off the Chilean coast and are globally classified as Endangered. However, very little is known about the present distribution and seasonal movements of fin whales off the coast of Chile. Passive acoustic data collected at the HA03 station of the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization off the Juan Fernandez Archipelago (JFA) between 2007 and 2016 were analyzed. The temporal occurrence of fin whale song was examined using automatic detection via spectrogram cross-correlation of song notes and by calculating the average acoustic power in the frequency bands of fin whale song. Fin whale song off JFA was composed of regular 17 Hz notes associated with high-frequency components at 85 Hz, with singlet phrasing at a dominant primary inter-note interval of 14.4 s and a secondary interval of 30.8 s. There was a clear seasonal pattern in acoustic presence that was consistent across all years: low or no song during the austral summer and a peak in song occurrence in austral winter. A propagation loss model estimated the detection range at this site to be 186 km. Where the fin whales that are heard off JFA spend the summer months remains an open question. Possible locations include the Western Antarctic Peninsula and/or off northern-central mainland Chile. Further studies should be pursued to better understand the distribution and seasonal movements and to support the conservation of this Endangered species.We thank the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization and the Chilean Commission of Nuclear Energy for proving the data used in this study. S.J.B. and N.B.C. were supported by the Center for Oceanographic Research COPAS Sur-Austral, CONICYT PIA PFB31. S.J.B. was also supported during analysis and writing by the Office of Naval Research Global (awards N62909-16-2214 and N00014-17-2606), and a grant to the Centro de Estudios Avanzados enZonas Áridas (CEAZA) ‘Proyecto CEAZA, 3er Fortalec-imiento de Centros Regionales, Programa Regional CONI-CYT R16A10003’. Our greatest thanks to John Hodgson MSc, Technical Director at Ocean Acoustic Developments and Adrian Brown of the Defence Science and Technology Laboratory (UK) for carrying out the propagation modelling free of charge. Many thanks to Rex Andrew for his help with PSD figure preparation in R. Thanks also go to Nathan Merchant for his kind help with PAMGuide. Many thanks to Michael Pitzrick for his guidance with XBAT. Many thanks to the members of the Southern Ocean Research Partnership Blue and Fin Whale Acoustic Trends Working group for useful discussions that improved the quality of this study

    Seasonal variation of the Beaufort shelfbreak jet and its relationship to Arctic cetacean occurrence

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8434–8454, doi:10.1002/2016JC011890.Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.Support for the most recent deployments of the shelfbreak moorings was provided by grants ARC-0856244 and ARC-855828 from the Office of Polar Programs of the National Science Foundation. P.L. acknowledges the financial support of the China Scholarship Council.2017-06-0

    Distinguishing personal belief from scientific knowledge for the betterment of killer whale welfare \u2013 a commentary

    Get PDF
    We contest publication of Marino et al. regarding captive killer whale (Orcinus orca) welfare because of misrepresentations of available data and the use of citations that do not support assertions. Marino et al. misrepresent stress response concepts and erroneously cite studies, which appear to support Marino et al.\u2019s philosophical beliefs regarding the cetacean hypothalamic\u2013pituitary\u2013adrenal axis. To be clear, these misrepresentations are not differences of scientific opinion, as the authors\u2019 conclusions lack any scientific basis. More extensive review of Marino et al.\u2019s citations reveal a dearth of empirical evidence to support their assertions. Further, Marino et al.\u2019s approach to animal welfare is not consistent with conventional veterinary approaches to animal welfare, including their apparent opposition to use of preventative and therapeutic veterinary interventions. While Marino et al. argue that killer whales\u2019 cognitive and spatial needs preclude management of this species under human care, misrepresentation of the citations used to support this opinion invalidates their arguments. Misleading interpretations of data relative to killer whales\u2019 cognitive and emotional needs and specious and unsubstantiated comparisons with states experienced by humans with posttraumatic stress disorder and other conditions, represent a number of strategies used to misrepresent knowledge regarding killer whale welfare. These misrepresentations and fallacies are inconsistent with scientific ethical standards for credible, peer-reviewed journals (ICMJE, 2018), and are barriers to rigorous discourse and identification of strategies for optimizing killer whale welfare. Assertions in the paper amount to nothing more than a compilation of conclusory, philosophical statements. We would also like to mention that manuscripts such as Marino et al.\u2019s do great damage to the fields of comparative psychology and to behavioral science as a whole

    Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Malige, F., Patris, J., Buchan, S. J., Stafford, K. M., Shabangu, F., Findlay, K., Hucke-Gaete, R., Neira, S., Clark, C. W., & Glotin, H. Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types. Scientific Reports, 10(1), (2020): 8121, doi:10.1038/s41598-020-64613-0.A decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, using acoustic data from several different sources in the eastern Pacific Ocean ranging between the Equator and Chilean Patagonia. The pulse rate of the song units as well as their peak frequency were measured using two different methods (summed auto-correlation and Fourier transform). The sources of error associated with each measurement were assessed. There was a linear decline in both parameters for the more common song type (southeast Pacific song type n.2) between 1997 to 2017. An abbreviated analysis, also showed a frequency decline in the scarcer southeast Pacific song type n.1 between 1970 to 2014, revealing that both song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequency to examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song types reported in the literature and a discussion on the reasons of the frequency shift are presented.The authors thank the help of Explorasub diving center (Chile), Agrupación turística Chañaral de Aceituno (Chile), ONG Eutropia (Chile), Valparaiso university (Chile), the international institutions and research programs CTBTO, IWC, BRILAM STIC AmSud 17-STIC-01. S.J.B. thanks support from the Center for Oceanographic Research COPAS Sur-Austral, CONICYT PIA PFB31, Biology Department of Woods Hole Oceanographic Institution, the Office of Naval Research Global (awards N62909-16-2214 and N00014-17-2606), and a grant to the Centro de Estudios Avanzados en Zonas Ãridas (CEAZA) “Programa Regional CONICYT R16A10003”. We thank SABIOD MI CNRS, EADM MaDICS CNRS and ANR-18-CE40-0014 SMILES supporting this research. We are grateful to colleagues at DCLDE 2018 and SOLAMAC 2018 conferences for useful comments on the preliminary version of this work. In this work we used only the free and open-source softwares Latex, Audacity and OCTAVE

    Beluga whales in the western Beaufort Sea : current state of knowledge on timing, distribution, habitat use and environmental drivers

    Get PDF
    ECG was supported by a National Research Council-National Academy of Sciences Postdoctoral Fellowship.The seasonal and geographic patterns in the distribution, residency, and density of two populations (Chukchi and Beaufort) of beluga whales (Delphinapterus leucas) were examined using data from aerial surveys, passive acoustic recordings, and satellite telemetry to better understand this arctic species in the oceanographically complex and changing western Beaufort Sea. An aerial survey data-based model of beluga density highlights the Beaufort Sea slope as important habitat for belugas, with westerly regions becoming more important as summer progresses into fall. The Barrow Canyon region always had the highest relative densities of belugas from July-October. Passive acoustic data showed that beluga whales occupied the Beaufort slope and Beaufort Sea from early April until early November and passed each hydrophone location in three broad pulses during this time. These pulses likely represent the migrations of the two beluga populations: the first pulse in spring being from Beaufort animals, the second spring pulse Chukchi belugas, with the third, fall pulse a combination of both populations. Core-use and home range analyses of satellite-tagged belugas showed similar use of habitats as the aerial survey data, but also showed that it is predominantly the Chukchi population of belugas that uses the western Beaufort, with the exception of September when both populations overlap. Finally, an examination of these beluga datasets in the context of wind-driven changes in the local currents and water masses suggests that belugas are highly capable of adapting to oceanographic changes that may drive the distribution of their prey.PostprintPeer reviewe
    corecore