270 research outputs found

    Video streaming

    Get PDF
    B

    Scattering Problems via Real-time Wave Packet Scattering

    Full text link
    In this paper, we use a straightforward numerical method to solve scattering models in one-dimensional lattices based on a tight-binding band structure. We do this by using the wave packet approach to scattering, which presents a more intuitive physical picture than the traditional plane wave approach. Moreover, a general matrix diagonalization method that is easily accessible to undergraduate students taking a first course in quantum mechanics is used. Beginning with a brief review of wave packet transport in the continuum limit, comparisons are made with its counterpart in a lattice. The numerical results obtained through the diagonalization method are then benchmarked against analytic results. The case of a resonant dimer is investigated in the lattice, and several resonant values of the mean wave packet momentum are identified. The transmission coefficients obtained for a plane wave incident on a step potential and rectangular barrier are compared by investigating an equivalent scenario in a lattice. Lastly, we present several short simulations of the scattering process which emphasize how a simple methodology can be used to visualize some remarkable phenomena.Comment: 11 pages, 3 new figures added as "gateways" to the animation

    Quality of experience and HTTP adaptive streaming: a review of subjective studies

    Get PDF
    HTTP adaptive streaming technology has become widely spread in multimedia services because of its ability to provide adaptation to characteristics of various viewing devices and dynamic network conditions. There are various studies targeting the optimization of adaptation strategy. However, in order to provide an optimal viewing experience to the end-user, it is crucial to get knowledge about the Quality of Experience (QoE) of different adaptation schemes. This paper overviews the state of the art concerning subjective evaluation of adaptive streaming QoE and highlights the challenges and open research questions related to QoE assessment

    Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea

    Get PDF
    The Dnepr paleo-delta area in the NW Black Sea is characterized by an abundant presence of methane seeps. During the expeditions of May–June 2003 and 2004 within the EU-funded CRIMEA project, detailed multibeam, seismic and hydro-acoustic water-column investigations were carried out to study the relation between the spatial distribution of methane seeps, sea-floor morphology and sub-surface structures.2778 new methane seeps were detected on echosounding records in an area of 1540 km2. All seeps are located in the transition zone between the continental shelf and slope, in water depths of 66 to 825 m. The integration of the different geophysical datasets clearly indicates that methane seeps are not randomly distributed in this area, but are concentrated in specific locations.The depth limit for the majority of the detected seeps is 725 m water depth, which corresponds more or less with the stability limit for pure methane hydrate at the ambient bottom temperature (8.9 °C) in this part of the Black Sea. This suggests that, where gas hydrates are stable, they play the role of buffer for the upward migration of methane gas and thus prevent seepage of methane bubbles into the water column.Higher up on the margin, gas seeps are widespread, but accurate mapping illustrates that seeps occur preferentially in association with particular morphological and sub-surface features. On the shelf, the highest concentration of seeps is found in elongated depressions (pockmarks) above the margins of filled channels. On the continental slope where no pockmarks have been observed, seepage occurs along crests of sedimentary ridges. There, seepage is focussed by a parallel-stratified sediment cover that thins out towards the ridge crests. On the slope, seepage also appears in the vicinity of canyons (bottom, flanks and margins) or near the scarps of submarine landslides where mass-wasting breaches the fine-grained sediment cover that acts as a stratigraphic seal. The seismic data show the presence of a distinct “gas front,” which has been used to map the depth of the free gas within the sea-floor sediments. The depth of this gas front is variable and locally domes up to the sea floor. Where the gas front approaches the seafloor, gas bubbles were detected in the water column. A regional map of the sub-surface depth of the gas front emphasises this “gas front-versus-seep” relationship.The integration of all data sets indicates that the spatial distribution of methane seeps in the Dnepr paleo-delta is mainly controlled by the gas-hydrate stability zone as well as by stratigraphic and sedimentary factors

    Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea

    Get PDF
    The Dnepr paleo-delta area in the NW Black Sea is characterized by an abundant presence of methane seeps. During the expeditions of May–June 2003 and 2004 within the EU-funded CRIMEA project, detailed multibeam, seismic and hydro-acoustic water-column investigations were carried out to study the relation between the spatial distribution of methane seeps, sea-floor morphology and sub-surface structures.2778 new methane seeps were detected on echosounding records in an area of 1540 km2. All seeps are located in the transition zone between the continental shelf and slope, in water depths of 66 to 825 m. The integration of the different geophysical datasets clearly indicates that methane seeps are not randomly distributed in this area, but are concentrated in specific locations.The depth limit for the majority of the detected seeps is 725 m water depth, which corresponds more or less with the stability limit for pure methane hydrate at the ambient bottom temperature (8.9 °C) in this part of the Black Sea. This suggests that, where gas hydrates are stable, they play the role of buffer for the upward migration of methane gas and thus prevent seepage of methane bubbles into the water column.Higher up on the margin, gas seeps are widespread, but accurate mapping illustrates that seeps occur preferentially in association with particular morphological and sub-surface features. On the shelf, the highest concentration of seeps is found in elongated depressions (pockmarks) above the margins of filled channels. On the continental slope where no pockmarks have been observed, seepage occurs along crests of sedimentary ridges. There, seepage is focussed by a parallel-stratified sediment cover that thins out towards the ridge crests. On the slope, seepage also appears in the vicinity of canyons (bottom, flanks and margins) or near the scarps of submarine landslides where mass-wasting breaches the fine-grained sediment cover that acts as a stratigraphic seal. The seismic data show the presence of a distinct “gas front,” which has been used to map the depth of the free gas within the sea-floor sediments. The depth of this gas front is variable and locally domes up to the sea floor. Where the gas front approaches the seafloor, gas bubbles were detected in the water column. A regional map of the sub-surface depth of the gas front emphasises this “gas front-versus-seep” relationship.The integration of all data sets indicates that the spatial distribution of methane seeps in the Dnepr paleo-delta is mainly controlled by the gas-hydrate stability zone as well as by stratigraphic and sedimentary factors

    Continuous flushing of the bladder in rodents reduces artifacts and improves quantification in molecular imaging

    Get PDF
    In this study, we evaluated the partial volume effect (PVE) of 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) tracer accumulation in the bladder on the positron emission tomographic (PET) image quantification in mice and rats suffering from inflammatory bowel disease. To improve the accuracy, we implemented continuous bladder flushing procedures. Female mice and rats were scanned using microPET/computed tomography (CT) at baseline and after induction of acute colitis by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) intrarectally. During the scans, the bladder was continuously flushed in one group, whereas in the other group, no bladder flushing was performed. As a means of in vivo and ex vivo validation of the inflammation, animals also underwent colonoscopy and were sacrificed for gamma counting (subpopulation) and to score the colonic damage both micro- and macroscopically as well as biochemically. At baseline, the microPET signal in the colon of both mice and rats was significantly higher in the nonflushed group compared to the flushed group, caused by the PVE of tracer activity in the bladder. Hence, the colonoscopy and postmortem analyses showed no significant differences at baseline between the flushed and nonflushed animals. TNBS induced significant colonic inflammation, as revealed by colonoscopic and postmortem scores, which was not detected by microPET in the mice without bladder flushing, again because of spillover of bladder activity in the colonic area. MicroPET in bladder-flushed animals did reveal a significant increase in 18F-FDG uptake. Correlations between microPET and colonoscopy, macroscopy, microscopy, and myeloperoxidase yielded higher Spearman rho values in mice with continuously flushed bladders during imaging. Comparable, although somewhat less pronounced, results were shown in the rat. Continuous bladder flushing reduced image artifacts and is mandatory for accurate image quantification in the pelvic region for both mice and rats. We designed and validated experimental protocols to facilitate such.Steven Deleye, Marthe Heylen, Annemie Deiteren, Joris De Man, Sigrid Stroobants, Benedicte De Winter, and Steven Staelen

    Use of the GATE Monte Carlo package for dosimetry applications

    Get PDF
    6 pages, 3 figures - submitted to NIM A, presented by D. VisvikisInternational audienceOne of the roles for MC simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP, EGSnrc and PTRAN. However, such codes do not easily facilitate the description of complicated 3D sources or emission tomography systems and associated data flow, which may be useful in different dosimetry application domains. Such problems can be overcome by the use of specific MC codes such as GATE, which is based on Geant4 libraries, providing a scripting interface with a number of advantages for the simulation of SPECT and PET systems. Despite this potential, its major disadvantage is in terms of efficiency involving long execution times for applications such as dosimetry. The strong points and disadvantages of GATE in comparison to other dosimetry specific codes are discussed and illustrated in terms of accuracy, efficiency and flexibility. A number of features, such as the use of voxelised and moving sources, as well as developments such as advanced visualisation tools and the development of dose estimation maps allowing GATE to be used for dosimetry applications are presented. In addition, different examples from dosimetry applications with GATE are given. Finally, future directions with respect to the use of GATE for dosimetry applications are outlined
    • …
    corecore