88 research outputs found

    Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles.

    Get PDF
    Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs

    Species recognition limits mating between hybridizing ant species

    Get PDF
    Identifying mechanisms limiting hybridization is a central goal of speciation research. Here, we studied pre-mating and post-mating barriers to hybridization between two ant species, Formica selysi and Formica cinerea. These species hybridize in the Rhône valley in Switzerland, where they form a mosaic hybrid zone, with limited introgression from F. selysi into F. cinerea. There was no sign of temporal isolation between the two species in the production of queens and males. With choice experiments, we showed that queens and males strongly prefer to mate with conspecifics. Yet, we did not detect post-mating barriers caused by genetic incompatibilities. Specifically, hybrids of all sexes and castes were found in the field and F1 hybrid workers did not show reduced viability compared to non-hybrid workers. To gain insights into the cues involved in species recognition, we analyzed the cuticular hydrocarbons of queens, males and workers and staged dyadic encounters between workers. Cuticular hydrocarbon profiles differed markedly between species, but were similar in F. cinerea and hybrids. Accordingly, workers also discriminated species, but they did not discriminate F. cinerea and hybrids. We discuss how the CHC-based recognition system of ants may facilitate the establishment of pre-mating barriers to hybridization, independent of hybridization costs. This article is protected by copyright. All rights reserved

    Neurologic complications of acute hepatitis E virus infection.

    Get PDF
    To assess the prevalence and clinical features of neurologic involvement in patients with acute hepatitis E virus (HEV) infection in Southern Switzerland. Among 1,940 consecutive patients investigated for acute hepatitis E, we identified 141 cases of acute of HEV infection (anti-HEV immunoglobulin M and immunoglobulin G both reactive and/or HEV RNA positive) between June 2014 and September 2017. Neurologic cases were followed up for 6 months. We compared patients with and without neurologic symptoms. Neurologic symptoms occurred in 43 acute HEV cases (30.4%) and consisted of neuralgic amyotrophy (NA, n = 15, 10.6%) and myalgia (n = 28, 19.8%). All NA cases were immunocompetent. Men had higher odds (OR = 5.2, CI 1.12-24.0, p = 0.03) of developing NA after infection with HEV, and in 3 couples simultaneously infected with HEV, only men developed NA. Bilateral involvement of NA was predominant (2:1) and occurred only in men. Seven NA cases were viremic (all genotype 3), but HEV was undetectable in their CSF. In the acute phase of NA, 9 patients were treated with intravenous immunoglobulin and 4 with prednisone, reporting no side effects and improvement in pain and strength. Myalgia occurred both without (n = 16) or with (n = 12) concomitant elevated serum creatinine kinase. Seven cases with myalgia in the shoulder girdle did not have muscle weakness ("forme fruste" of NA). Neurologic symptoms occurred in one-third of acute HEV infections and consisted of NA and myalgia. NA seems to occur more frequently in men infected by HEV and has a predominant (but not exclusive) bilateral involvement

    Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines

    Get PDF
    The study aimed to assess the effects of polyphenols when used in combination with doxorubicin and etoposide, and to determine whether polyphenols sensitised leukaemia cells, causing inhibition of cell proliferation, cell cycle arrest and induction of apoptosis. This study is based on findings in solid cancer tumours, which have shown that polyphenols can sensitize cells to chemotherapy, and induce apoptosis and/or cell-cycle arrest. This could enable a reduction of chemotherapy dose and off-target effects, whilst maintaining treatment efficacy. Quercetin, apigenin, emodin, rhein and cis-stilbene were investigated alone and in combination with etoposide and doxorubicin in two lymphoid and two myeloid leukaemia cells lines. Measurements were made of ATP levels (using CellTiter-Glo assay) as an indication of total cell number, cell cycle progression (using propidium iodide staining and flow cytometry) and apoptosis (NucView caspase 3 assay and Hoechst 33342/propidium iodide staining). Effects of combination treatments on caspases 3, 8 and 9 activity were determined using Glo luminescent assays, glutathione levels were measured using the GSH-Glo Glutathione Assay and DNA damage determined by anti-γH2AX staining. Doxorubicin and etoposide in combination with polyphenols synergistically reduced ATP levels, induced apoptosis and increased S and/or G2/M phase cell cycle arrest in lymphoid leukaemia cell lines. However, in the myeloid cell lines the effects of the combination treatments varied; doxorubicin had a synergistic or additive effect when combined with quercetin, apigenin, emodin, and cis-stilbene, but had an antagonistic effect when combined with rhein. Combination treatment caused a synergistic downregulation of glutathione levels and increased DNA damage, driving apoptosis via caspase 8 and 9 activation. However, in myeloid cells where antagonistic effects were observed, this was associated with increased glutathione levels and a reduction in DNA damage and apoptosis. This study has demonstrated that doxorubicin and etoposide activity were enhanced by polyphenols in lymphoid leukaemia cells, however, differential responses were seen in myeloid cells with antagonistic responses seen in some combination therapies

    Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT)

    Get PDF
    Background Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. Results This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley (Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol’s iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. Conclusion The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering detailed non-destructive internal 3D phenotypic information. This work represents a novel application of X-ray µCT that could enhance research undertaken in monocot species to enable effective non-destructive staging and developmental analysis for molecular genetic studies and to determine effects of stresses at particular growth stages

    Investigating the microstructure of plant leaves in 3D with lab-based X-ray Computed Tomography

    Get PDF
    Background Leaf cellular architecture plays an important role in setting limits for carbon assimilation and, thus, photosynthetic performance. However, the low density, fine structure, and sensitivity to desiccation of plant tissue has presented challenges to its quantification. Classical methods of tissue fixation and embedding prior to 2D microscopy of sections is both laborious and susceptible to artefacts that can skew the values obtained. Here we report an image analysis pipeline that provides quantitative descriptors of plant leaf intercellular airspace using lab-based X-ray Computed Tomography (microCT). We demonstrate successful visualisation and quantification of differences in leaf intercellular airspace in 3D for a range of species (including both dicots and monocots) and provide a comparison with a standard 2D analysis of leaf sections. Results We used the microCT image pipeline to obtain estimates of leaf porosity and mesophyll exposed surface area (Smes) for three dicot species (Arabidopsis, tomato and pea) and three monocot grasses (barley, oat and rice). The imaging pipeline consisted of (1) a masking operation to remove the background airspace surrounding the leaf, (2) segmentation by an automated threshold in ImageJ and then (3) quantification of the extracted pores using the ImageJ ‘Analyze Particles’ tool. Arabidopsis had the highest porosity and lowest Smes for the dicot species whereas barley had the highest porosity and the highest Smes for the grass species. Comparison of porosity and Smes estimates from 3D microCT analysis and 2D analysis of sections indicates that both methods provide a comparable estimate of porosity but the 2D method may underestimate Smes by almost 50%. A deeper study of porosity revealed similarities and differences in the asymmetric distribution of airspace between the species analysed. Conclusions Our results demonstrate the utility of high resolution imaging of leaf intercellular airspace networks by lab-based microCT and provide quantitative data on descriptors of leaf cellular architecture. They indicate there is a range of porosity and Smes values in different species and that there is not a simple relationship between these parameters, suggesting the importance of cell size, shape and packing in the determination of cellular parameters proposed to influence leaf photosynthetic performance
    corecore